Skip to main content
Log in

On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Dynamic behavior of panels exposed to subsonic flow subjected to external excitation is investigated in this paper. The von Karman’s large deflection equations of motion for a flexible panel and Kelvin’s model of structural damping is considered to derive the governing equation. The panel under study is two-dimensional and simply supported. A Galerkin-type solution is introduced to derive the unsteady aerodynamic pressure from the linearized potential equation of uniform incompressible flow. The governing partial differential equation is transformed to a series of ordinary differential equations by using Galerkin method. The aeroelastic stability of the linear panel system is presented in a qualitative analysis and numerical study. The fourth-order Runge-Kutta numerical algorithm is used to conduct the numerical simulations to investigate the bifurcation structure of the nonlinear panel system and the distributions of chaotic regions are shown in the different parameter spaces. The results shows that the panel loses its stability by divergence not flutter in subsonic flow; the number of the fixed points and their stabilities change after the dynamic pressure exceeds the critical value; the chaotic regions and periodic regions appear alternately in parameter spaces; the single period motion trajectories change rhythmically in different periodic regions; the route from periodic motion to chaos is via doubling-period bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schetz J.A.: Aerodynamics of high-speed trains. Ann. Rev. Fluid. Mech. 33, 371–414 (2001)

    Article  Google Scholar 

  2. Jeromr, C.R.: A train for the 21st century. Rail International 2–8 (1994)

  3. Raghunathan R.S., Kim H.D., Setoguchi T.: Aerodynamics of high-speed railway trains. Prog. Aerosp. sci. 38, 469–514 (2002)

    Article  Google Scholar 

  4. Guiheu, C.: Resistance to forward movement of TGV-PSE trainsets: evaluation of studies and results of measurements. Fr. Railw. Rev. 1(1) (1983)

  5. Ishii, T.: Aeroelastic instabilities of simply supported panels in subsonic flow. Meeting of the American Institute of Aeronautics and Astronautics, pp. 765–772. Los Angeles, Paper IAA (1965)

  6. Hedgepeth J.M.: Flutter of rectangular simply supported panels at high supersonic speeds. J. Aeronaut. Sci. 24, 563–573 (1957)

    MathSciNet  MATH  Google Scholar 

  7. Dugundji J., Dowell E.H., Perkin B.: Subsonic flutter of panels on continuous elastic foundations. AIAA J. 1, 1146–1154 (1963)

    Article  Google Scholar 

  8. Kornecki A.: Static and dynamic instability of panels and cylindrical shells in subsonic potential flow. J. Sound Vib. 32, 251–263 (1974)

    Article  MATH  Google Scholar 

  9. Kornecki A., Dowell E.H., O’Brien J.: On the aeroelastic instability of two-dimensional panels in unform incompressible flow. J. Sound Vib. 47, 163–178 (1974)

    Article  Google Scholar 

  10. Guo C.Q., Païdoussis M.P.: Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. J. Appl. Mech. 67, 171–176 (2000)

    Article  MATH  Google Scholar 

  11. Yang Z.C., Xia W.: Analytical models, numerical solutions and advances in the study of panel flutter. Adv. Mech. 40(1), 81–97 (2010) (in Chinese)

    Google Scholar 

  12. Dowell E.H.: Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system. J. Sound Vib. 85, 333–344 (1982)

    Article  MathSciNet  Google Scholar 

  13. Everall P.R., Hunt G.W.: Arnold tongue predictions of secondary buckling in thin elastic plate. J. Mech. Phys. Solids 47, 2187–2206 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Batra R.C., Wei Z.: Dynamic buckling of a thin thermoviscoplastic rectangular plate. Thin-walled Struct. 43, 273–290 (2005)

    Article  Google Scholar 

  15. Chen H., Virgin L.N.: Finite element analysis of post-buckling dynamics in plate-part I: an asymptotic approach. Int. J. Solids Struct. 43, 3893–4007 (2006)

    Google Scholar 

  16. Chen H., Virgin L.N.: Finite element analysis of post-buckling dynamics in plate-part II: a non-stationary analysis. Int. J. Solids Struct. 43, 4008–4027 (2006)

    Article  MATH  Google Scholar 

  17. Akour S.N., Nayfeh J.F.: Nonlinear dynamics of polar-orthotropic circular plates. Int. J. Struct. Stab. Dyn. 6, 253–268 (2006)

    Article  Google Scholar 

  18. Awrejcewicz J., Krysko V.A., Narkaitis G.G.: Bifurcations of a thin plate-strip excited transversally and axially. Nonlinear Dyn. 32, 187–209 (2003)

    Article  MATH  Google Scholar 

  19. Zhang W., Liu Z.M., Yu P.: Global dynamic of a parametrically and externally excited thin plate. Nonlinear Dyn. 24, 245–268 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li P., Yang Y.R., Zhang M.L.: Melnikov’s method for chaos of a two-dimensional thin panel in subsonic flow with external excitation. Mech. Res. Commun. 38, 524–528 (2011)

    Article  Google Scholar 

  21. Li, P., Yang, Y.R., Xu, W.: Nonlinear dynamics analysis of a two-dimensional thin panel with an external forcing in incompressible subsonic flow. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0162-8

  22. Dowell E.H.: Nonlinear oscillations of a fluttering plate I. AIAA J. 4(7), 1267–1275 (1966)

    Article  Google Scholar 

  23. Wang L., Ni Q., Huang Y.Y.: Bifurcations and chaos in forced cantilever system with impacts. J. Sound Vib. 296, 1068–1078 (2006)

    Article  Google Scholar 

  24. Huang J.C., Jing Z.J.: Bifurcations and chaos in three-well duffing system with one external forcing. Chaos Solitons Fractals 40, 1449–1466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kenfack A.: Bifurcation structure of two coupled periodically driven double-well duffing oscillators. Chaos Solitons Fractals 15, 205–218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dowell E H.: Aeroelasticity of Plates and Shells. Noordhoff International Publishing, Leyden (1975)

    MATH  Google Scholar 

  27. Bisplinghoff R.L., Ashley H., Halfman R.L.: Aeroelasticity. Addison-Wesley Publishing, Cambridge (1955)

    MATH  Google Scholar 

  28. Mateescu D., Païdoussis M.P.: Unsteady viscous effects on the annular-flow-induced instability of a rigid cylindrical body in a narrow duct. J. Fluids Struct. 1, 197–215 (1987)

    Article  MATH  Google Scholar 

  29. Huseyin K.: Vibrations and Stability of Multiple Parameter Systems. Noordhoff International Publishering Alphen Ann Den Rijn, Netherlands (1978)

    MATH  Google Scholar 

  30. Zhao L.C., Yang Z.C.: Chaotic motions of an airfoil with non-linear stiffness in incompressible flow. J. Sound Vib. 138, 245–254 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Yang, Y., Xu, W. et al. On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation. Arch Appl Mech 82, 1251–1267 (2012). https://doi.org/10.1007/s00419-012-0618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0618-4

Keywords

Navigation