Skip to main content
Log in

Minimal loading conditions for higher-order numerical homogenisation schemes

Cauchy, second gradient and micromorphic substitute media

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present study deals with the formulation of minimal loading conditions for microscale applications in numerical two-scale modelling (FE2) approaches. From the homogenisation concept, a set of volume average rules constrains the microscale PDE to be solved. They are considered to be the minimal set of loading conditions and can be specified by additional polynomial or periodic assumptions, for example, on the microscale displacement field. Whereas the resulting volume integrals can be transformed into surface integrals for so-called first-order homogenisation schemes, this is not possible for a second-order homogenisation of second gradient or micromorphic effective media substituting a heterogeneous microcontinuum represented by a volume element on the microscale. Several numerical examples compare the minimal loading condition concept with standard techniques discussed in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aşkar A., Çakmak A.S.: A structural model of a micropolar continuum. Int. J. Eng. Sci. 6, 583–589 (1968)

    Article  MATH  Google Scholar 

  2. Diebels S., Steeb H.: The size effect in foams and its theoretical and numerical investigation. Proc. R. Soc. Lond. A 458, 2869–2883 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feyel F., Chaboche J.L.: FE2 multiscale approach for modelling the lastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comp. Meth. Appl. Mech. Eng. 183, 309–330 (2000)

    Article  MATH  Google Scholar 

  5. Forest S.: Homogenization methods and the mechanics of generalized continua—part 2. Theor. Appl. Mech. 28–29, 113–143 (2002)

    Article  MathSciNet  Google Scholar 

  6. Forest S.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Article  Google Scholar 

  8. Forest S., Sab K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25, 449–454 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Forest S., Trinh D.K.: Generalized continua and non-homogeneous boundary conditions in homogenization methods. Z. Angew. Math. Mech. 90(2), 90–109 (2011)

    Article  MathSciNet  Google Scholar 

  10. Germain P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hain M., Wriggers P.: Numerical homogenization of hardened cement paste. Comp. Mech. 42, 197–212 (2008)

    Article  MATH  Google Scholar 

  12. Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  13. Jänicke, R.: Micromorphic Media: Interpretation by Homogenisation. PhD-thesis. Saarbrücker Reihe Materialwissenschaft und Werkstofftechnik, Band 21, Shaker Verlag, Aachen. http://scidok.sulb.uni-saarland.de/volltexte/2010/3209 (2010)

  14. Jänicke R., Diebels S.: Requirements on periodic micromorphic media. In: Maugin, G.A., Metrikine, A. (eds) Mechanics of generalized continua, pp. 99–108. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Jänicke R., Diebels S., Sehlhorst H.G., Düster A.: Two-scale modelling of micromorphic continua. Cont. Mech. Therm. 21(4), 297–315 (2009)

    Article  MATH  Google Scholar 

  16. Kaczmarczyk L., Pearce C.J., Bićanić N.: Scale transition and enforcement of RVE boundary conditions in second-order homogenization. Int. J. Numer. Meth. Eng. 74, 506–522 (2008)

    Article  MATH  Google Scholar 

  17. Kouznetsova, V.G., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Comp. Mech., 37–48 (2001)

  18. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54, 1235–1260 (2002)

    Article  MATH  Google Scholar 

  19. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M.: Size of a representative volume element in a second-order computational homogenization framework. Int. J. Multiscale Comput. Eng., 575–598 (2004)

  20. Maugin G.A.: Material Inhomogeneities in Elasticity. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  21. Mesarovic S., Padbidri J.: Minimal kinematic boundary conditions for simulations of disordered microstructures. Phil. Mag. 85(1), 65–78 (2005)

    Article  Google Scholar 

  22. Miehe C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comp. Meth. Appl. Mech. Eng. 134, 223–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mindlin R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  25. Nemat-Nasser S., Hori M.: Micromechanics. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  26. Phani A.S., Woodhouse J., Fleck N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)

    Article  Google Scholar 

  27. Schröder, J.: Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. Habilitationsschrift, Institut für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart (2000)

  28. Swan C.C.: Techniques for stress-controlled and strain-controlled homogenization of inelastic periodic composites. Comp. Meth. Appl. Mech. Eng. 117, 249–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tekoǧlu C., Onck P.R.: Size effects in the mechanical behaviour of cellular materials. J. Mat. Sci. 40, 3564–5911 (2005)

    Google Scholar 

  30. Trinh, D.K., Jänicke, R., Auffray, N., Diebels, S., Forest, S.: Evaluation of generalized continuum substitution models for heterogeneous materials. Int J Multiscale Comput. Eng. (accepted for publication) (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Jänicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jänicke, R., Steeb, H. Minimal loading conditions for higher-order numerical homogenisation schemes. Arch Appl Mech 82, 1075–1088 (2012). https://doi.org/10.1007/s00419-012-0614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0614-8

Keywords

Navigation