Skip to main content
Log in

Two-scale modelling of micromorphic continua

A numerical homogenization scheme

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

According to their peculiar mechanical properties, the description of cellular materials is of high interest. Modelling aspects to be considered are, e.g. pronounced size depending boundary layer effects as well as a deformation-driven evolution of anisotropy or porosity. In the present contribution, we pay special attention to the description of size-dependent microtopological effects on the one hand. On the other hand, we focus on the relevance of extended continuum theories describing the local deformation state of microstructured materials. We, therefore, introduce a homogenization scheme for two-scale problems replacing a heterogeneous Cauchy continuum on the microscale by a homogeneous effective micromorphic continuum on the macroscale. The transitions between both scales are obtained by appropriate projection and homogenization rules which have to be derived, on the one hand, by kinematic assumptions, i.e. the minimization of the macroscopic displacement field, and, on the other hand, by energetic considerations, i.e. the evaluation of an extended Hill–Mandel condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capriz G., Podio-Guidugli P., Williams W.: On balance equations for materials with affine structure. Meccanica 17, 80–84 (1982)

    Article  MATH  Google Scholar 

  2. Cosserat E., Cosserat F.: Théorie des corps déformables. A. Hermann et Fils, Paris (1909)

    Google Scholar 

  3. Diebels S.: Ein mikropolares Materialgesetz für poröse Festkörper. Z. Angew. Math. Mech. 79, S533–S534 (1999)

    MATH  Google Scholar 

  4. Diebels S., Steeb H.: The size effect in foams and its theoretical and numerical investigation. Proc. R. Soc. Lond. A 458, 2869–2883 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Diebels S., Steeb H.: Stress and couple stress in foams. Comput. Math. Sci. 28, 714–722 (2003)

    Article  Google Scholar 

  6. Diebels S., Johlitz M., Steeb H., Possart W., Batal J.: A continuum-based model capturing size effects in polymer bonds. J. Phys. 62, 34–42 (2007)

    Google Scholar 

  7. Eringen C.: Polar and Nonlocal Field Theories, Continuum Physics, vol. IV. Academic Press, Boston (1976)

    Google Scholar 

  8. Eringen C.: Microcontinuum Field Theories, vol. I: Foundations and Solids. Springer-Verlag, Berlin (1999)

    Google Scholar 

  9. Feyel F., Chaboche J.L.: FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)

    Article  MATH  Google Scholar 

  10. Forest S.: Mechanics of generalized continua: construction by homogenization. J. Phys. IV, 39–48 (1998)

    MathSciNet  Google Scholar 

  11. Forest S.: Homogenization methods and the mechanics of generalized continua—Part 2. Theor. Appl. Mech. 28–29, 113–143 (2002)

    Article  MathSciNet  Google Scholar 

  12. Forest S.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Forest S., Sab K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25, 449–454 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus, Première partie: Théorie du second gradient. J. Mecanique 12, 235–274 (1973)

    MATH  MathSciNet  Google Scholar 

  15. Germain P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. J. Appl. Mech. 25, 556–575 (1973)

    MATH  MathSciNet  Google Scholar 

  16. Hazanov S.: Hill condition and overall properties of composites. Arch. Appl. Mech. 68(6), 385–394 (1998)

    Article  MATH  Google Scholar 

  17. Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  18. Hill R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1972)

    Article  MATH  Google Scholar 

  19. Huet C.: Coupled size and boundary-condition eects in viscoelastic heterogeneous and composite bodies. Mech. Mater. 31, 787–829 (1999)

    Article  Google Scholar 

  20. Jänicke R., Diebels S.: A numerical homogenisation strategy for micromorphic continua. Nuovo Cimento Soc. Ital. Fis. C 31(1), 121–132 (2009)

    Google Scholar 

  21. Kaczmarczyk L., Pearce C.J., Bićanić N.: Scale transition and enforcement of RVE boundary conditions in second-order homogenization. Int. J. Numer. Methods Eng. 74, 506–522 (2008)

    Article  MATH  Google Scholar 

  22. Kirchner N., Steinmann P.: Mechanics of extended continua: modeling and simulation of elastic microstretch materials. Comput. Mech. 40(4), 651–666 (2007)

    Article  MATH  Google Scholar 

  23. Kouznetsova, V.G.: Computational homogenization for the multi-scale analysis of multi-phase m aterial. PhD-thesis, Technische Universiteit Eindhoven, The Netherlands (2002)

  24. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Size of a representative volume element in a second-order computational homogenization framework. Int. J. Multiscale Comput. Eng. 2(4), 575–598 (2004)

    Article  Google Scholar 

  25. Larsson R., Diebels S.: A second order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69, 2485–2512 (2006)

    Article  MathSciNet  Google Scholar 

  26. Maugin G.A.: Nonlocal theories or gradient-type theories: a matter of convenience?. Acta Mater. 31, 15–26 (1979)

    MATH  MathSciNet  Google Scholar 

  27. Maugin G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  28. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  29. Neff, P.: On material constants for micromorphic continua. In: K. Hutter, Y. Wang (eds.) Proceedings of ‘International Symposium on Trends in Applications of Mathematics to Mechanics’. Shaker, Aachen (2004)

  30. Nemat-Nasser S.: On finite plastic flow of crystalline solids and geomaterials. J. Appl. Mech. 50, 1114–1126 (1983)

    Article  MATH  Google Scholar 

  31. Nemat-Nasser S., Hori M.: Micromechanics. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  32. Steeb H., Diebels S.: Continua with affine microstructure: theoretical aspects and application. Proc. Appl. Math. Mech. 5, 319–320 (2005)

    Article  Google Scholar 

  33. Tekoǧlu C., Onck P.R.: Size effects in two-dimensional voronoi foams: A comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Jänicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jänicke, R., Diebels, S., Sehlhorst, HG. et al. Two-scale modelling of micromorphic continua. Continuum Mech. Thermodyn. 21, 297–315 (2009). https://doi.org/10.1007/s00161-009-0114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0114-4

Keywords

PACS

Navigation