Skip to main content
Log in

Force coefficients and Strouhal numbers of three circular cylinders subjected to a cross-flow

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, wind tunnel experiments were conducted to measure the mean force coefficients and Strouhal numbers for three circular cylinders of equal diameters in an equilateral-triangular arrangement when subjected to a cross-flow. These experiments were carried out at five subcritical Reynolds numbers ranging from 1.26 × 104 to 6.08 × 104. The pressure distributions on the surface of the cylinders were measured using pressure transducers. Furthermore, the hot-wire anemometer was employed to measure the vortex shedding frequencies behind each cylinder. Six spacing ratios (l/d) varying from 1.5 to 4 were investigated. It is observed that for l/d > 2, the upstream cylinder experiences a lower mean drag coefficient compared with the downstream cylinders. The minimum values of the drag coefficient for the downstream cylinders occur at l/d = 1.5 and l/d = 2, because there is no vortex shedding from the foregoing cylinders. Also, the value of the pressure coefficient behind the upstream cylinder reduces by increasing l/d. Moreover, by decreasing the value of l/d, the Strouhal number for the upstream cylinder increases. It can be concluded that the flow pattern and aerodynamic coefficients are basically dependent on l/d; in other words, decreasing l/d results in an increase in the effects of the flow interference between the cylinders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akosile O.O., Sumner D.: Staggered circular cylinders immersed in a uniform planar shear flow. J. Fluids Struct. 18(5), 613–633 (2003). doi:10.1016/j.jfluidstructs.2003.07.014

    Article  Google Scholar 

  2. Alam M.M., Sakamoto H.: Investigation of Strouhal frequencies of two staggered bluff bodies and detection of multistable flow by wavelets. J. Fluids Struct. 20(3), 425–449 (2005). doi:10.1016/j.jfluidstructs.2004.11.003

    Article  Google Scholar 

  3. Alam M.M., Sakamoto H., Zhou Y.: Determination of flow configurations and fluid forces acting on two staggered circular cylinders of equal diameter in cross-flow. J. Fluids Struct. 21(4), 363–394 (2005). doi:10.1016/j.jfluidstructs.2005.07.009

    Article  Google Scholar 

  4. Carmo B.S., Meneghini J.R.: Numerical investigation of the flow around two circular cylinders in tandem. J. Fluids Struct. 22(6–7), 979–988 (2006). doi:10.1016/j.jfluidstructs.2006.04.016

    Article  Google Scholar 

  5. Chen S.S.: Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere Publ. Corp., Washington (1987)

    Google Scholar 

  6. Dalton C., Szabo J.M.: Drag on a group of cylinders. ASME J. Press. Vessel Technol. 99, 152–157 (1977)

    Article  Google Scholar 

  7. Eastop T.D., Turner J.R.: Airflow around three cylinders at various pitch-to-diameter ratios for both a longitudinal and a transverse arrangement. Trans. Inst. Chem. Eng. 60, 359–363 (1982)

    Google Scholar 

  8. Fitzpatrick J.A., Donaldson I.S., McKnight W.: Strouhal numbers for flows in deep tube array models. J. Fluids Struct. 2(2), 145–160 (1988). doi:10.1016/S0889-9746(88)80016-1

    Article  Google Scholar 

  9. Flachsbart O.: Winddruck auf geschlossene und offene Gebauede, Ergebnisse Aerodyn. In: Prandtl, L., Betz, A. (eds) Versuchanstalt Goettingen, IV Series, Verlag Oldenburg, Munich (1932)

    Google Scholar 

  10. Gerhardt H.J., Kramer C.: Interference effects for groups of stacks. J. Wind Eng. Ind. Aerodyn. 8(1–2), 195–202 (1981). doi:10.1016/0167-6105(81)90018-0

    Article  Google Scholar 

  11. Gu Z.F., Sun T.F.: On interference between two circular cylinders in staggered arrangement at high subcritical Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 80(3), 287–309 (1999). doi:10.1016/S0167-6105(98)00205-0

    Article  Google Scholar 

  12. Gu Z.F., Sun T.F.: Classification of flow pattern on three circular cylinders in equilateral-triangular arrangements. J. Wind Eng. Ind. Aerodyn. 89(6), 553–568 (2001). doi:10.1016/S0167-6105(00)00091-X

    Article  Google Scholar 

  13. Gu Z.F., Sun T.F., He D.X., Zhang L.L.: Two circular cylinders in high-turbulence flow at supercritical Reynolds number. J. Wind Eng. Ind. Aerodyn. 49(1–3), 379–388 (1993). doi:10.1016/0167-6105(93)90032-J

    Article  Google Scholar 

  14. Guillaume D.W., LaRue J.C.: Investigation of the flopping regime with two-, three- and four-cylinder arrays. Exp. Fluids 27(2), 145–156 (1999). doi:10.1007/s003480050339

    Article  Google Scholar 

  15. Igarashi T., Suzuki K.: Characteristics of the flow around three circular cylinders arranged in line. Bull. JSME 27(233), 2397–2404 (1984)

    Article  Google Scholar 

  16. Jester W., Kallinderis Y.: Numerical study of incompressible flow about fixed cylinder pairs. J. Fluids Struct. 17(4), 561–577 (2003). doi:10.1016/S0889-9746(02)00149-4

    Article  Google Scholar 

  17. Kareem A., Kijewski T., Lu P.C.: Investigation of interference effects for a group of finite cylinders. J. Wind Eng. Ind. Aerodyn. 77–78(1), 503–520 (1998). doi:10.1016/S0167-6105(98)00168-8

    Article  Google Scholar 

  18. Kiya M., Arie M., Tamura H., Mori H.: Vortex shedding from two circular cylinders in staggered arrangement. ASME J. Fluids Eng. 102(2), 166–173 (1980). doi:10.1115/1.3240637

    Article  Google Scholar 

  19. Lam K., Cheung W.C.: Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements. J. Fluid Mech. 196(1), 1–26 (1988). doi:10.1017/S0022112088002587

    Article  Google Scholar 

  20. Lam K., Lo S.C.: A visualization study of cross-flow around four cylinders in a square configuration. J. Fluids Struct. 6(1), 109–131 (1992). doi:10.1016/0889-9746(92)90058-B

    Article  Google Scholar 

  21. Lam K., Li J.Y., So R.M.C.: Force coefficients and Strouhal numbers of four cylinders in cross-flow. J. Fluids Struct. 18(3–4), 305–324 (2003). doi:10.1016/j.jfluidstructs.2003.07.008

    Article  Google Scholar 

  22. Mittal S., Kumar V., Raghuvanshi A.: Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Int. J. Numer. Methods Fluids 25(11), 1315–1344 (1997). doi:10.1002/(SICI)1097-0363(19971215)25:11<1315::AID-FLD617>3.0.CO;2-P

    Article  MATH  Google Scholar 

  23. Nishimura T.: Flow across tube banks. In: Cheremisinoff, N.P. (eds) Encycl. Fluid Mechanics-Flow Phenom and Measurement, vol. 1, pp. 763–785. Gulf Publ. Co., Houston (1986)

    Google Scholar 

  24. Oengoren A., Ziada S.: An in-depth study of vortex shedding, acoustic resonance and turbulent forces in normal triangle tube arrays. J. Fluids Struct. 12(6), 717–758 (1998). doi:10.1006/jfls.1998.0162

    Article  Google Scholar 

  25. Ohya Y.O., Okajima A., Hayashi M.: Wake interference and vortex shedding. In: Cheremisinoff, N.P. (eds) Encycl. Fluid Mechanics-Aerodynamics and Compressible Flow, vol. 8, pp. 322–389. Gulf Publ. Co., Houston (1989)

    Google Scholar 

  26. Price S.J., Paidoussis M.P.: The aerodynamic forces acting on groups of two and three circular cylinders when subjected to a cross-flow. J. Wind Eng. Ind. Aerodyn. 17(3), 329–347 (1984). doi:10.1016/0167-6105(84)90024-2

    Article  Google Scholar 

  27. Price S.J., Zahn M.L.: Fluidelastic behavior of a normal triangular array subject to cross-flow. J. Fluids Struct. 5(3), 259–278 (1991). doi:10.1016/0889-9746(91)90485-8

    Article  Google Scholar 

  28. Sayers A.T.: Flow interference between three equispaced cylinders when subjected to a cross-flow. J. Wind Eng. Ind. Aerodyn. 26(1), 1–19 (1987). doi:10.1016/0167-6105(87)90033-X

    Article  Google Scholar 

  29. Sharman B., Lien F.S., Davidson L., Norberg C.: Numerical predictions of low Reynolds number flows over two tandem circular cylinders. Int. J. Numer. Methods Fluids 47(5), 423–447 (2005). doi:10.1002/fld.812

    Article  MATH  Google Scholar 

  30. Sumner D., Richards M.D.: Some vortex shedding characteristics of the staggered configuration of circular cylinders. J. Fluids Struct. 17(3), 345–350 (2003). doi:10.1016/S0889-9746(02)00145-7

    Article  Google Scholar 

  31. Sumner D., Price S.J., Paidoussis M.P.: Flow-pattern identification for two staggered circular cylinders in cross-flow. J. Fluid Mech. 411(1), 263–303 (2000). doi:10.1017/S0022112099008137

    Article  MATH  Google Scholar 

  32. Sumner D., Richards M.D., Akosile O.O.: Two staggered circular cylinders of equal diameter in cross-flow. J. Fluids Struct. 20(2), 255–276 (2005). doi:10.1016/j.jfluidstructs.2004.10.006

    Article  Google Scholar 

  33. Tatsuno M., Amamoto H., Ishi I.K.: Effects of interference among three equidistantly arranged cylinders in a uniform flow. Fluid Dyn. Res. 22(5), 297–315 (1998). doi:10.1016/S0169-5983(97)00040-3

    Article  Google Scholar 

  34. Ting D.S.K., Wang D.J., Price S.J., Paidoussis M.P.: An experimental study on the fluidelastics forces for two staggered circular cylinders in cross-flow. J. Fluids Struct. 12(3), 259–294 (1998). doi:10.1006/jfls.1997.0140

    Article  Google Scholar 

  35. Yunseok K., Changkoon Ch.: Relationship between aerodynamic responses and pressure distributions on three circular cylinders. J. Wind Eng. 56, 1–10 (1993) (in Japanese)

    Google Scholar 

  36. Zdravkovich M.M.: Interstitial flow field and fluid forces. In: Au-Yang, M.K. (eds) Technology for the 90s: A Decade of Progress, ASME, New York (1993)

    Google Scholar 

  37. Zdravkovich M.M.: Flow Around Circular Cylinders, vol. 2. Oxford University Press, Oxford (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouryoussefi, S.G., Mirzaei, M. & Pouryoussefi, S.MH. Force coefficients and Strouhal numbers of three circular cylinders subjected to a cross-flow. Arch Appl Mech 81, 1725–1741 (2011). https://doi.org/10.1007/s00419-011-0514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0514-3

Keywords

Navigation