Skip to main content
Log in

Cracks’ closure in 3-D fracture dynamics: the effect of relative location of two coplanar cracks

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the problem of two equal coplanar cracks with allowance for the crack faces contact interaction was investigated. The problem of the cracks located in homogeneous, isotropic, and linearly elastic solid subjected to normally incident tension–compression wave is solved by the boundary integral equations method. The influence of the distance between two cracks on the stress intensity factors (opening mode and transverse shear mode) is studied for a range of wave numbers. The results are compared with those obtained neglecting cracks’ closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliabadi M.H., Brebbia C.A., Parton V.Z.: Static and Dynamic Fracture Mechanics. Computational Mechanics Publications, Southampton (1994)

    MATH  Google Scholar 

  2. Atluri S.N., Nishioka T.: Computational methods for three-dimensional problems of fracture. In: Atluri, S.N. (eds) Computational Methods in Mechanics of Fracture, pp. 228–291. Elsevier, Amsterdam (1986)

    Google Scholar 

  3. Balas J., Sladek J., Sladek V.: Stress Analysis by Boundary Element Methods. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  4. Capuani D., Willis J.R.: Wave propagation in elastic media with cracks. Part II: Transient nonlinear response of a cracked matrix. Eur. J. Mech. A Solids 18, 159–175 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen B., Gross D.: Interaction of two coplanar penny-shaped cracks with transient elastic waves. Wave Motion 26, 69–83 (1997)

    Article  MATH  Google Scholar 

  6. Chen B., Gross D.: Two parallel penny-shaped cracks under the action of dynamic impacts. Arch. Appl. Mech. 67, 555–565 (1997)

    Article  MATH  Google Scholar 

  7. Cherepanov G.P.: Mechanics of Brittle Fracture. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  8. Collins W.D.: Some axially symmetric stress distributions in elastic solids containing penny-shaped cracks. I. Cracks in an infinite solid and a thick plate. Proc. R. Soc. A 266(1326), 359–386 (1962)

    Article  MATH  Google Scholar 

  9. Collins W.D.: Some coplanar punch and crack problems in three-dimensional elastostatics. Proc. R. Soc. A 274(1359), 507–528 (1963)

    Article  MATH  Google Scholar 

  10. Feng X.Q., Wang X.S.: Frictional sliding of microcracks under compression. Key Eng. Mater. 261–263, 129–134 (2004)

    Article  Google Scholar 

  11. Guz A.N., Guz I.A., Men’shikov A.V., Men’shikov V.A.: Penny-shaped crack at the interface between elastic half-spaces under the action of a shear wave. Int. Appl. Mech. 45(5), 534–539 (2009)

    Article  Google Scholar 

  12. Guz A.N., Menshykov O.V., Zozulya V.V., Guz I.A.: Contact problem for the flat elliptical crack under normally incident shear wave. CMES Comput. Model Eng. Sci. 17(3), 205–214 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Guz A.N., Zozulya V.V.: Elastodynamic unilateral contact problems with friction for bodies with cracks. Int. Appl. Mech. 38(8), 895–932 (2002)

    Article  MathSciNet  Google Scholar 

  14. Guz A.N., Zozulya V.V.: On dynamical fracture mechanics in the case of polyharmonic loading by P-wave. Int. Appl. Mech. 45(9), 1033–1039 (2009)

    Article  Google Scholar 

  15. Guz I.A., Menshykov O.V., Menshykov V.A.: Application of boundary integral equations to elastodynamics of an interface crack. Int. J. Fract. 140, 277–284 (2006)

    Article  MATH  Google Scholar 

  16. Guz, I.A., Menshykova, M.V., Menshykov, O.V.: 2D Elastodynamics of interface microcracks: the effect of cracks interaction. Adv Compos Mat (2010, in press). doi:10.1007/s10443-010-9152-0

  17. Isida M., Hirota K., Noguchi H., Yoshida T.: Two parallel elliptic cracks in an infinite solid subjected to tension. Int. J. Fract. 27, 31–48 (1985)

    Article  Google Scholar 

  18. Itou S.: 3D dynamic stress intensity factors at three rectangular cracks in an infinite elastic medium subjected to a time-harmonic stress wave. Arch. Appl. Mech. 69, 286–298 (1999)

    Article  MATH  Google Scholar 

  19. Itou S.: Three-dimensional dynamic stress intensity factors around two parallel square cracks in an infinite elastic medium subjected to a time-harmonic stress wave. Acta Mech. 143, 79–90 (2000)

    Article  MATH  Google Scholar 

  20. Kachanov M.: Elastic solids with many cracks: a simple method of analysis. Int. J. Solids Struct. 23(1), 12–43 (1987)

    Article  Google Scholar 

  21. Kassir M.K., Sih G.C.: Three-dimensional stress distribution around an elliptical crack under arbitrary loadings. ASME J. Appl. Mech. 33(3), 601–611 (1966)

    Google Scholar 

  22. Kit H.S., Khaj M.V., Mykhas’kiv V.V.: Analysis of dynamic stress concentration in an infinite body with parallel penny-shaped cracks by BIEM. Eng. Fract. Mech. 55(2), 191–207 (1996)

    Article  Google Scholar 

  23. Lei J., Garsia-Sanchez F., Wunsche M., Zhang Ch., Wang Y.S., Saez A.: Dynamic analysis of interfacial crack problems in anisotropic bi-materials by a time-domain BEM. Eng. Fract. Mech. 76, 1996–2010 (2009)

    Article  Google Scholar 

  24. Lin W., Keer L.M.: Scattering by a planar three-dimensional crack. J. Acoust. Soc. Am. 82(4), 1442–1448 (1987)

    Article  Google Scholar 

  25. Mal A.K.: Interaction of elastic waves with a penny-shaped crack. Int. J. Eng. Sci. 8, 381–388 (1970)

    Article  MATH  Google Scholar 

  26. Martin P.A.: Diffraction of elastic waves by a penny-shaped crack. Proc. R. Soc. A 378(1773), 263–285 (1981)

    Article  MATH  Google Scholar 

  27. Martin P.A., Rizzo F.J., Gonzalves I.R.: On hypersingular boundary integral equations for certain problems in mechanics. Mech. Res. Commun. 16, 65–71 (1989)

    Article  MATH  Google Scholar 

  28. Menshykov O.V., Guz I.A.: Contact interaction of crack faces under oblique incidence of a harmonic wave. Int. J. Fract. 139(1), 145–152 (2006)

    Article  MATH  Google Scholar 

  29. Menshykov O.V., Guz I.A.: Effect of contact interaction of the crack faces for a crack under harmonic loading. Int. Appl. Mech. 43(7), 809–815 (2007)

    Article  Google Scholar 

  30. Menshykov O.V., Guz I.A.: Elastodynamic problem for two penny-shaped cracks: the effect of cracks’ closure. Int. J. Fract. 153, 69–76 (2008)

    Article  Google Scholar 

  31. Menshykov O.V., Guz I.A., Menshykov V.A.: Boundary integral equations in elastodynamics of interface cracks. Phil. Trans. R. Soc. A 366(1871), 1835–1839 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Menshykov O.V., Menshykov V.A., Guz I.A.: The effect of frequency in the problem of interface crack under harmonic loading. Int. J. Fract. 146, 197–202 (2007)

    Article  MATH  Google Scholar 

  33. Menshykov O.V., Menshykova M.V., Guz I.A.: Effect of friction of the crack faces for a linear crack under an oblique harmonic loading. Int. J. Eng. Sci. 46, 438–458 (2008)

    Article  MATH  Google Scholar 

  34. Menshykov O.V., Menshykov V.A., Guz I.A.: The contact problem for an open penny-shaped crack under normally incident tension-compression wave. Eng. Fract. Mech. 75(5), 1114–1126 (2008)

    Article  Google Scholar 

  35. Menshykov O.V., Menshykov V.A., Guz I.A.: Elastodynamics of a crack on the bimaterial interface. Eng. Anal. Bound. Elem. 33, 294–301 (2009)

    Article  MathSciNet  Google Scholar 

  36. Menshykova M.V., Menshykov O.V., Guz I.A.: Modelling crack closure for an interface crack under harmonic loading. Int. J. Fract. 165, 127–134 (2010)

    Article  Google Scholar 

  37. Mykhailova I.I., Menshykov O.V., Menshykova M.V., Guz I.A.: Boundary integral equations for an interface linear crack under harmonic loading. J. Comp. Appl. Math. 234, 2279–2286 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mykhaskiv V., Stankevych V., Zhbadynskyi I., Zhang Ch.: 3-D dynamic interaction between a pennyshaped crack and a thin layer joining two elastic half-spaces. Int. J. Fract. 159, 137–149 (2009)

    Article  Google Scholar 

  39. Noda N.A., Oda K.: Interaction effect of stress intensity factors for any number of collinear interface cracks. Int. J. Fract. 84, 117–128 (1997)

    Article  Google Scholar 

  40. Ravi-Chandar K.: Dynamic fracture. In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds) Comprehensive Structural Integrity, pp. 285–361. Pergamon, Oxford (2003)

    Google Scholar 

  41. Sun Y., Zhang Z., Kitipornachai S., Liew K.M.: Analyzing the interaction between collinear interfacial cracks by an efficient boundary element-free method. Int. J. Eng. Sci. 44, 37–48 (2006)

    Article  MATH  Google Scholar 

  42. Wunsche M., Zhang Ch., Sladek J., Sladek V., Hirose S., Kuna M.: Transient dynamic analysis of interface cracks in layered anisotropic solids under impact loading. Int. J. Fract. 157, 131–147 (2009)

    Article  Google Scholar 

  43. Xiao Z.M., Lim M.K., Liew K.M.: Stress intensity factors for two coplanar penny-shaped cracks under uniaxial tension. Int. J. Eng. Sci. 32(2), 303–311 (1994)

    Article  MATH  Google Scholar 

  44. Xiao Z.M., Lim M.K., Liew K.M.: Determination of stress fielsd in an elastic solid weakened by parallel penny-shaped cracks. Acta. Mech. 114, 83–94 (1996)

    Article  MATH  Google Scholar 

  45. Zhang Ch., Gross D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publications, Southampton (1998)

    MATH  Google Scholar 

  46. Zhang Ch., Gross D.: The solution of plane problems of wave loaded cracks by an integral equation method. Proc. Appl. Math. Mech. 68, 299–305 (1988)

    MATH  Google Scholar 

  47. Zozulya V.V., Men’shikov V.A.: Solution of three-dimensional problems of the dynamic theory of elasticity for bodies with cracks using hypersingular integrals. Int. Appl. Mech. 36(1), 74–81 (2000)

    Article  Google Scholar 

  48. Zozulya V.V., Menshykov O.V.: Use of the constrained optimization algorithms in some problems of fracture mechanics. Opt. Eng. 4, 365–384 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Menshykov.

Additional information

The financial support of the Engineering and Physical Sciences Research Council (grant EP/E020976/1), The Royal Society, The Royal Academy of Engineering, The Royal Society of Edinburgh and the German Academic Exchange Service (DAAD) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykhailova, I.I., Menshykov, O.V. & Guz, I.A. Cracks’ closure in 3-D fracture dynamics: the effect of relative location of two coplanar cracks. Arch Appl Mech 81, 1215–1230 (2011). https://doi.org/10.1007/s00419-010-0481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0481-0

Keywords

Navigation