Skip to main content
Log in

Coriolis effect on thermal convection in a couple-stress fluid-saturated rotating rigid porous layer

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Both linear and weakly nonlinear stability analyses are performed to study thermal convection in a rotating couple-stress fluid-saturated rigid porous layer. In the case of linear stability analysis, conditions for the occurrence of possible bifurcations are obtained. It is shown that Hopf bifurcation is possible due to Coriolis force, and it occurs at a lower value of the Rayleigh number at which the simple bifurcation occurs. In contrast to the nonrotating case, it is found that the couple-stress parameter plays a dual role in deciding the stability characteristics of the system, depending on the strength of rotation. Nonlinear stability analysis is carried out by constructing a set of coupled nonlinear ordinary differential equations using truncated representation of Fourier series. Sub-critical finite amplitude steady motions occur depending on the choice of physical parameters but at higher rotation rates oscillatory convection is found to be the preferred mode of instability. Besides, the stability of steady bifurcating equilibrium solution is discussed using modified perturbation theory. Heat transfer is calculated in terms of Nusselt number. Also, the transient behavior of the Nusselt number is investigated by solving the nonlinear differential equations numerically using the Runge–Kutta–Gill method. It is noted that increase in the value of Taylor number and the couple-stress parameter is to dampen the oscillations of Nusselt number and thereby to decrease the heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kakac S., Kilkis B., Kulacki F.A., Auric F.: Convective Heat and Mass Transfer in Porous Media. Kluwer, Dordrecht (1991)

    Google Scholar 

  2. Kaviany M.: Principles of Heat Transfer in Porous Media. 2nd edn. Springer, New York (1991)

    Google Scholar 

  3. Bejan A.: Convection Heat Transfer. 2nd edn. Wiley, New York (1995)

    Google Scholar 

  4. Vafai K.: Handbook of Porous Media. Marcel Dekker, New York (2000)

    Book  MATH  Google Scholar 

  5. Vafai K.: Handbook of Porous Media. 2nd edn. Taylor and Francis (CRC), Boca Raton (2005)

    Book  Google Scholar 

  6. Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  7. Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London (1961)

    MATH  Google Scholar 

  8. Galdi G.P., Straughan B.A.: Nonlinear analysis of the stabilizing effect of rotation in the Benard problem. Proc. R. Soc. Lond. A 402, 257 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kloosterziel R.C., Carnevale G.F.: Closed form linear stability conditions for rotating Rayleigh-Benard convection with rigid stress- free upper and lower boundaries. J. Fluid Mech. 480, 25 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedrich, R., Rudraiah, N.: Numerical study of large amplitude convection in a rotating fluid-saturated porous layer. In: Proceedings of IV GAMM Conference on Numerical methods in Fluid Mechanics, p. 7. Viewieg, Paris (1981)

  11. Palm E., Tyvand P.A.: Thermal convection in a rotating porous layer. J. Appl. Math. Phys. (ZAMP) 35, 122 (1984)

    Article  MATH  Google Scholar 

  12. Qin Y., Kaloni P.N.: Nonlinear stability problem of a rotating porous layer. Q. J. Appl. Math. LIII, 129 (1995)

    MathSciNet  Google Scholar 

  13. Vadasz P.: Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 276, 351 (1998)

    Article  MathSciNet  Google Scholar 

  14. Vadasz P.: Flow and thermal convection in rotating porous media. In: Vafai, K. (eds) Handbook of Porous Media, p. 395. Marcel Dekker, Inc, New York (2000)

    Chapter  Google Scholar 

  15. Straughan B.: A sharp nonlinear stability threshold in rotating porous convection. Proc. R. Soc. Lond. A 457, 87 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Govender S.: Coriolis effect on the linear stability of convection in porous layer placed far away from the axis of rotation. Transp. Porous Med. 51, 315 (2003)

    Article  MathSciNet  Google Scholar 

  17. Straughan B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A 462, 409 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malashetty M.S., Mahantesh S., Sridhar K.: Thermal convection in a rotating porous layer using a thermal nonequilibrium model. Phys. Fluids 19(5), 1 (2007)

    Article  Google Scholar 

  19. Shivakumara I.S., Savitha M.N., Krishna B.C., Devaraju N.: Bifurcation analysis for thermal convection in a rotating porous layer. Meccanica 44, 225 (2009)

    Article  Google Scholar 

  20. Shenoy A.V.: Non-Newtonian Fluid Heat Transfer in Porous Media, Advances in Heat Transfer. Academic Press, San Diego, CA (1994)

    Google Scholar 

  21. Eringen A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  22. Stokes V.K.: Couple-stresses in fluids. Phys. Fluids 91, 709 (1966)

    Google Scholar 

  23. Goel A.K., Agarawal S.C.: Hydromagnetic stability of an unbounded couple-stress binary fluid mixture having vertical temperature and concentration gradients with rotation. Indian J. Appl. Math. 30(10), 991 (1999)

    MATH  Google Scholar 

  24. Sunil, Sharma R.C., Mohinder P.: On couple-stress fluid heated from below in porous medium in the presence of rotation. App. Mech. Engg. 5(4), 883 (2000)

    MATH  Google Scholar 

  25. Sunil, Sharma R.C., Mohinder P.: On a couple-stress fluid heated from below in porous medium in the presence of magnetic field and rotation. J. Porous Media 5(2), 149 (2002)

    MATH  Google Scholar 

  26. Sunil, Sharma R.C., Rajender Singh C.: Effect of suspended particles on couple-stress fluid heated and soluted from below in porous medium. J. Porous Media 7(1), 9 (2004)

    Article  MATH  Google Scholar 

  27. Malashetty M.S., Gaikwad S.N., Mahantesh S.: An analytical study of linear and non-linear double diffusive convection with Soret effect in couple-stress liquids. Int. J. Therm. Sci. 45, 897 (2006)

    Article  Google Scholar 

  28. Gaikwad S.N., Malashetty M.S., Rama Prasad K.: An analytical study of linear and non-linear double diffusive convection with Soret and Dufour effects in couple-stress liquids. Int. J. Nonlinear Mech. 42(7), 903 (2007)

    Article  Google Scholar 

  29. Malashetty M.S., Shivakumara I.S., Sridhar K.: The onset of convection in a couple-stress fluid-saturated porous layer using a thermal non-equilibrium model. Phys. Lett. A 373, 781 (2009)

    Article  Google Scholar 

  30. Shivakumara, I.S.: Onset of convection in a couple-stress fluid-saturated porous medium: effects of non-uniform temperature gradients. Arch. Appl. Mech. (2009) doi:10.1007/s00419-009-0347-5

  31. Hubbert M.K.: Darcy’s law and the field equations of the flow of underground fluids. Trans. Am. Inst. Min. Met. Eng. 207, 222 (1956)

    Google Scholar 

  32. De wiest R.J.M.: Geohydrology. Wiley, New York (1965)

    Google Scholar 

  33. Veronis G.: Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech. 24, 545 (1966)

    Article  MathSciNet  Google Scholar 

  34. Moroz M.: Interacting steady and oscillatory rolls in triple convection. Geophys. Asrophys. Fluid Dyn. 41, 313 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Shivakumara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivakumara, I.S., Sureshkumar, S. & Devaraju, N. Coriolis effect on thermal convection in a couple-stress fluid-saturated rotating rigid porous layer. Arch Appl Mech 81, 513–530 (2011). https://doi.org/10.1007/s00419-010-0425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0425-8

Keywords

Navigation