Skip to main content
Log in

Elliptical inhomogeneity with polynomial eigenstrains embedded in orthotropic materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A closed-form solution for elastic field of an elliptical inhomogeneity with polynomial eigenstrains in orthotropic media having complex roots is presented. The distribution of eigenstrains is assumed to be in the form of quadratic functions in Cartesian coordinates of the points of the inhomogeneity. Elastic energy of inhomogeneity–matrix system is expressed in terms of 18 real unknown coefficients that are analytically evaluated by means of the principle of minimum potential energy and the corresponding elastic field in the inhomogeneity is obtained. Results indicate that quadratic terms in the eigenstrains induce zeroth-order elastic strain components, which reflect the coupling effect of the zeroth- and second-order terms in the polynomial expressions on the elastic field. In contrast, the first-order terms in the eigenstrains only produce corresponding elastic fields in the form of the first-order terms. Numerical examples are given to demonstrate the normal and shear stresses at the interface between the inhomogeneity and the matrix. Furthermore, the solution reduces to known results for the special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376–396 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  2. Eshelby J.D.: The elastic field outside an ellipsoidal inclusion. Proc. Roy. Soc. A 252, 561–569 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eshelby J.D.: Elastic inclusion and inhomogeneities. In: Sneddon, I.N., Hill, R. (eds) Progress in Solid Mechanics, vol. 2, pp. 89–140. North Holland, Amsterdam (1961)

    Google Scholar 

  4. Bacon D.J., Barnett D.M., Scattergood R.O.: Anisotropic continuum theory of lattice defects. Prog. Mater. Sci. 23, 51–262 (1978)

    Article  Google Scholar 

  5. Willis J.R.: Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mura T.: Micromechanics of Defects in Solids, 2nd edn. Martinus-Nijhoff, Dordrecht (1987)

    Google Scholar 

  7. Ting T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  8. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Solids. Elsevier, New York (1999)

    Google Scholar 

  9. Markov K., Preziosi L.: Heterogeneous Media: Micromechanics Modeling Methods and Simulations. Birkhauser Verlag, Switzerland (2000)

    MATH  Google Scholar 

  10. Buryachenko V.A.: Multiparticle effective field and related methods in micromechanics of composite materials. Appl. Mech. Rev. 54, 1–47 (2001)

    Article  Google Scholar 

  11. Hardiman N.J.: Elliptical elastic inclusion in an infinite elastic plate. Q. J. Mech. Appl. Math. 7(2), 226–230 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  12. Asaro R.J., Barnett D.M.: Non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion. J. Mech. Phys. Solids 23(1), 77–83 (1975)

    Article  MATH  Google Scholar 

  13. Luo H.A., Weng G.J.: On Eshelby’s inclusion problem in a three-phase spherically concentric solid, and a modification of Mori-Tanaka’s method. Mech. Mater. 6(4), 347–361 (1987)

    Article  Google Scholar 

  14. Rahman M.: The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain. J. Appl. Mech. Trans. ASME 69(5), 593–601 (2002)

    Article  MATH  Google Scholar 

  15. Walpole L.J.: Elastic Field of an inclusion in an anisotropic medium. Proc. Roy. Soc. A 300, 270–289 (1967)

    Article  MATH  Google Scholar 

  16. Kinoshita N., Mura T.: Elastic fields of inclusions in anisotropic media. Phys. Status Solidi A 5(3), 759–768 (1971)

    Article  Google Scholar 

  17. Kinoshita N., Mura T.: An ellipsoidal inclusion with polynomial eigenstrains. Q. Appl. Math. 44(1), 195–199 (1986)

    MATH  MathSciNet  Google Scholar 

  18. Mura T., Kinoshita N.: The polynomial eigenstrain problem for an anisotropic ellipsoidal inclusion. Phys. Status Solidi A 48(2), 447–450 (1978)

    Article  Google Scholar 

  19. Lubarda V.A., Markenscoff X.: On the absence of Eshelby property for non-ellipsoidal inclusions. Int. J. Solids Struct. 35(25), 3405–3411 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Markenscoff X.: On the shape of the Eshelby inclusions. J. Elast. 49(2), 163–166 (1997)

    Article  MathSciNet  Google Scholar 

  21. Markenscoff X.: Inclusions with constant eigenstress. J. Mech. Phys. Solids 46(12), 2297–2301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Markenscoff X.: Inclusions of uniform eigenstrains and constant or other stress dependence. J. Appl. Mech. Trans. ASME 65(4), 863–866 (1998)

    Article  Google Scholar 

  23. Nie G.H., Guo L., Chan C.K., Shin F.G.: Non-uniform eigenstrain induced stress field in an elliptical inhomogeneity embedded in orthotropic media with complex roots. Int. J. Solids Struct. 44(10), 3575–3593 (2007)

    Article  MATH  Google Scholar 

  24. Nie G.H., Guo L., Chan C.K., Shin F.G.: Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with purely imaginary roots. Mech. Adv. Mater. Struct. 16(1), 33–45 (2009)

    Article  Google Scholar 

  25. Nie G.H., Chan C.K., Luo L., Shin F.G.: Non-uniform eigenstrain induced anti-plane stress field in an elliptic inhomogeneity embedded in anisotropic media with a single plane of symmetry. Acta Mech. 206(1–2), 23–37 (2009)

    Article  MATH  Google Scholar 

  26. Lekhnitskii S.G.: Anisotropic Plates. Gordon and Breach Science Publishers, New York (1968)

    Google Scholar 

  27. Muskhelishvili N.I.: Some basic problems of the mathematical theory of elasticity: fundamental equations, plane theory of elasticity, torsion and bending. Noordhoff International, Leyden, Netherlands (1975)

    MATH  Google Scholar 

  28. Jaswon M.A., Bhargava R.D.: Two-dimensional elastic inclusion problem. Proc. Camb. Phil. Soc. 57, 669–680 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bhargava R.D., Radhakrishna H.C.: Two-dimensional elliptical inclusions. Proc. Camb. Phil. Soc. 59(4), 811–820 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  30. Willis J.R.: Anisotropic elastic inclusion problems. Q. J. Mech. Appl. Math. 17(2), 157–174 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yang H.C., Chou Y.T.: Generalized plane problems of elastic inclusions in anisotropic solids. J. Appl. Mech. Trans. ASME 43(3), 424–430 (1976)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Nie, G.H. & Chan, C.K. Elliptical inhomogeneity with polynomial eigenstrains embedded in orthotropic materials. Arch Appl Mech 81, 157–170 (2011). https://doi.org/10.1007/s00419-009-0399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0399-6

Keywords

Navigation