Skip to main content
Log in

SGBEM modeling of fatigue crack growth in particulate composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The symmetric-Galerkin boundary element method (SGBEM) has previously been employed to model 2-D crack growth in particulate composites under quasi-static loading conditions. In this paper, an initial attempt is made in extending the simulation technique to analyze the interaction between a growing crack and clusters of perfectly bonded particles in a brittle matrix under cyclic loading conditions. To this end, linear elastic fracture mechanics and no hysteresis are assumed. Of particular interest is the role clusters of inclusions play on the fatigue life of particulate composites. The simulations employ a fatigue crack growth prediction tool based upon the SGBEM for multiregions, a modified quarter-point crack-tip element, the displacement correlation technique for evaluating stress intensity factors, a Paris law for fatigue crack growth rates, and the maximum principal stress criterion for crack-growth direction. The numerical results suggest that this fatigue crack growth prediction tool is as robust as the quasi-static crack growth prediction tool previously developed. The simulations also show a complex interplay between a propagating crack and an inclusion cluster of different densities when it comes to predicting the fatigue life of particulate composites with various volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitey R., Phan A.-V., Tippur H.V., Kaplan T.: Modeling of crack growth through particulate clusters in brittle matrix by symmetric-Galerkin boundary element method. Int. J. Fract. 141, 11–25 (2006)

    Article  Google Scholar 

  2. Williams R.C., Phan A.-V., Tippur H.V., Kaplan T., Gray L.J.: SGBEM analysis of crack growth and particle(s) interactions due to elastic constants mismatch. Eng. Fract. Mech. 74, 314–331 (2007)

    Article  Google Scholar 

  3. Hartmann F.: Introduction to Boundary Elements—Theory and Applications. Springer, Berlin (1989)

    MATH  Google Scholar 

  4. Bonnet M., Maier G., Polizzotto C.: On symmetric Galerkin boundary element method. ASME Appl. Mech. Rev. 51, 669–704 (1998)

    Article  Google Scholar 

  5. Gray L.J.: Evaluation of hypersingular integrals in the boundary element method. Math. Comput. Model. 15, 165–174 (1991)

    Article  MATH  Google Scholar 

  6. Martin P.A., Rizzo F.J.: Hypersingular integrals: how smooth must the density be? Int. J. Numer. Methods Eng. 39, 687–704 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blackburn W.S., Hall W.S., Rooke D.P.: Numerical simulation of the initiation and growth of new fatigue cracks following crack intersections. Int. J. Fatigue 17, 437–446 (1995)

    Article  Google Scholar 

  8. Prasad N.N.V., Aliabadi M.H., Rooke D.P.: Thermomechanical fatigue crack growth. Int. J. Fatigue 18, 349–361 (1996)

    Article  Google Scholar 

  9. Cisilino A.P., Aliabadi M.H.: Three-dimensional BEM analysis for fatigue crack growth in welded components. Int. J. Pres. Ves. Piping 70, 135–144 (1997)

    Article  Google Scholar 

  10. Blackburn W.S.: Three dimensional calculation of growth of cracks starting in parallel planes by boundary elements. Int. J. Fatigue 21, 933–939 (1999)

    Article  Google Scholar 

  11. dell’Erba D.N., Aliabadi M.H.: Three-dimensional thermo-mechanical fatigue crack growth using BEM. Int. J. Fatigue 22, 261–273 (2000)

    Article  Google Scholar 

  12. Yang B., Mall S., Ravi-Chandar K.: A cohesive zone model for fatigue crack growth in quasibrittle materials. Int. J. Solids Struct. 38, 3927–3944 (2001)

    Article  MATH  Google Scholar 

  13. Dirgantara T., Aliabadi M.H.: Numerical simulation of fatigue crack growth in pressurized shells. Int. J. Fatigue 24, 725–738 (2002)

    Article  MATH  Google Scholar 

  14. Cisilino A.P., Aliabadi M.H.: Dual boundary element assessment of three-dimensional fatigue crack growth. Eng. Anal. Boundary Elements 28, 1157–1173 (2004)

    Article  MATH  Google Scholar 

  15. Yngvesson M., Nilsson F.: Fatigue crack growth of surface cracks under non-symmetric loading. Eng. Fract. Mech. 63, 375–393 (1999)

    Article  Google Scholar 

  16. Spievak L.E., Wawrzynek P.A., Ingraffea A.R., Lewicki D.G.: Simulating fatigue crack growth in spiral bevel gears. Eng. Fract. Mech. 68, 53–76 (2001)

    Article  Google Scholar 

  17. Barlow K.W., Chandra R.: Fatigue crack propagation simulation in an aircraft engine fan blade attachment. Int. J. Fatigue 27, 1661–1668 (2005)

    Article  Google Scholar 

  18. Yan X.: Multiple crack fatigue growth modeling by displacement discontinuity method with crack-tip elements. Appl. Math. Model. 30, 489–508 (2006)

    Article  MATH  Google Scholar 

  19. Yan X.: A boundary element modeling of fatigue crack growth in a plane elastic plate. Mech. Res. Commun. 33, 470–481 (2006)

    Article  Google Scholar 

  20. Xiang Z., Lie S.T., Wang B., Cen Z.: A simulation of fatigue crack growth in a welded T-joint using 3D boundary element method. Int. J. Pres. Ves. Piping 80, 111–120 (2003)

    Article  Google Scholar 

  21. Sekine H., Yan B., Yasuho T.: Numerical simulation study of fatigue crack growth behavior of cracked aluminum panels repaired with a FRP composite patch using combined BEM/FEM. Eng. Fract. Mech. 72, 2549–2563 (2005)

    Article  Google Scholar 

  22. Henshell R.D., Shaw K.G.: Crack tip finite elements are unnecessary. Int. J. Numer. Methods Eng. 9, 495–507 (1975)

    Article  MATH  Google Scholar 

  23. Barsoum R.S.: On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Numer. Methods Eng. 10, 25–37 (1976)

    Article  MATH  Google Scholar 

  24. Blandford G.E., Ingraffea A.R., Liggett J.A.: Two-dimensional stress intensity factor computations using the boundary element method. Int. J. Numer. Methods Eng. 17, 387–404 (1981)

    Article  MATH  Google Scholar 

  25. Gray L.J., Paulino G.H.: Crack tip interpolation, revisited. SIAM J. Appl. Math. 58, 428–455 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gray L.J., Phan A.-V., Paulino G.H., Kaplan T.: Improved quarter-point crack tip element. Eng. Fract. Mech. 70, 269–283 (2003)

    Article  Google Scholar 

  27. Phan A.-V., Gray L.J., Kaplan T.: On some benchmarch results for the interaction of a crack with a circular inclusion. ASME J. Appl. Mech. 74, 1282–1284 (2007)

    Article  Google Scholar 

  28. Erdogan F., Sih G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 86, 519–527 (1963)

    Google Scholar 

  29. Rizzo F.J.: An integral equation approach to boundary value problems of classical elastostatics. Q. Appl. Math. 25, 83–95 (1967)

    MATH  Google Scholar 

  30. Maier G., Diligenti M., Carini A.: A variational approach to boundary element elastodynamic analysis and extension to multidomain problems. Comp. Methods Appl. Eng. 92, 193–213 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hölzer S.M.: How to deal with hypersingular integrals in the symmetric BEM. Comm. Numer. Methods Eng. 9, 219–232 (1993)

    Article  Google Scholar 

  32. Gray L.J., Paulino G.H.: Symmetric Galerkin boundary integral formulation for interface and multi-zone problems. Int. J. Numer. Methods Eng. 40, 3085–3101 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Williams M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. ASME J. Appl. Mech. 19, 526–528 (1952)

    Google Scholar 

  34. Williams M.L.: On the stress distribution at the base of a stationary crack. ASME J. Appl. Mech. 24, 109–114 (1957)

    MATH  Google Scholar 

  35. Martin P.A.: End-point behavior of solutions to hypersingular equations. Proc. R. Soc. Lond. A 432, 301–320 (1991)

    Article  MATH  Google Scholar 

  36. Sih G.C.: Strain energy density factor applied to mixed mode crack problems. Int. J. Fract. 10, 305–321 (1974)

    Article  Google Scholar 

  37. Paris P.C., Erdogan F.A.: A critical analysis of crack propagation laws. Trans. ASME J. Basic Eng. 85, 528–534 (1963)

    Google Scholar 

  38. Portela A., Aliabadi M.H., Rooke D.P.: Dual boundary element incremental analysis of crack propagation. Comput. Struct. 46, 237–247 (1993)

    Article  MATH  Google Scholar 

  39. Brown E.N., White S.R., Sottos N.R.: Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part I: Manual infiltration. Compos. Sci. Technol. 65, 2466–2473 (2005)

    Article  Google Scholar 

  40. Sih G.C., Barthelemy B.M.: Mixed mode fatigue crack growth predictions. Eng. Fract. Mech. 3, 439–451 (1980)

    Article  Google Scholar 

  41. Frost N.E., Dugdale D.S.: The propagation of fatigue cracks in sheet specimens. J. Mech. Phys. Solids 6, 92–110 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-V. Phan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, D.J., Phan, AV., Tippur, H.V. et al. SGBEM modeling of fatigue crack growth in particulate composites. Arch Appl Mech 80, 307–322 (2010). https://doi.org/10.1007/s00419-009-0318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0318-x

Keywords

Navigation