Skip to main content
Log in

Flutter instability of damped plates under combined conservative and nonconservative loads

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The combined flutter and divergence instability of plates of arbitrary geometry subjected to any type of boundary conditions under interior and edge conservative and nonconservative loads are solved in presence of external and internal damping. In contrast to previous investigations, the membrane stress resultants are not in general uniform, since they result from plane stress problem under the given body forces (conservative and nonconservative) and the prescribed inplane boundary conditions. The differential equations of the problem are derived using Hamilton’s principle. The resulted initial boundary value problem is solved using the analog equation method (AEM), which is a BEM-based domain meshless method. The combined action of conservative and nonconservative forces is also investigated. Several plates have been studied and useful conclusions on the effect of boundary conditions and damping on flutter load have been drawn. The obtained numerical results demonstrate the accuracy of the developed method and its capability to solve realistic engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck M.: Die Knicklast des einseitigeingespannten tangential gedrückten Stabes. ZAMP 3, 225–228 (1952)

    Article  MATH  Google Scholar 

  2. Bolotin V.V.: Nonconservative Problems of the Theory of Elastic Stability. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  3. Leipholz H.: Stability of Elastic Systems. Noordhoff, The Netherlands (1980)

    MATH  Google Scholar 

  4. Herrmann G.: Stability of equilibrium of elastic systems subjected to nonconservative forces. Appl. Mech. Rev. 20, 103–108 (1967)

    Google Scholar 

  5. Katsikadelis J.T., Tsiatas G.C.: Optimum design of structures subjected to follower forces. Int. J. Mech. Sci. 49(11), 1204–1212 (2007)

    Article  Google Scholar 

  6. Sugiyama Y., Langthjem M.A.: Dynamic stability of columns subjected to follower loads: a survey. J. Sound Vibr. 238, 809–851 (2000)

    Article  Google Scholar 

  7. Kounadis A.N.: Divergence and flutter instability of elastically restrained structures under follower forces. Int. J. Eng. Sci. 19(4), 553–562 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kounadis A.N., Katsikadelis J.T.: Shear and rotatory inertia effect on Beck’s column. J. Sound Vibr. 49, 171–178 (1976)

    Article  Google Scholar 

  9. Kounadis A.N., Katsikadelis J.T.: Coupling effects on a cantilever subjected to a follower force. J. Sound Vibr. 62(1), 131–139 (1979)

    Article  MATH  Google Scholar 

  10. Seyranian A.P., Mailybaev A.A.: Multiparameter stability theory with mechanical applications. World Scientific, Singapore (2004)

    Google Scholar 

  11. Katsikadelis J.T., Tsiatas G.C.: Non-linear dynamic stability of damped Beck’s column with variable cross-section. Int. J. Nonlin. Mech. 42(1), 164–171 (2007)

    Article  Google Scholar 

  12. Farshad M.: Stability of cantilever plates subjected to biaxial subtangential loading. J. Sound Vibr. 58(4), 555–561 (1978)

    Article  MATH  Google Scholar 

  13. Adali S.: Stability of a rectangular plate under nonconservative and conservative forces. Int. J. Solids Struct. 18, 1043–1052 (1982)

    Article  MATH  Google Scholar 

  14. Leipholz H.: On the stability of rectangular, completely supported plates with uncoupling boundary conditions subjected to uniformly distributed follower forces. Comput. Meth. Appl. Mech. Eng. 30, 19–52 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leipholz H.: Application of extended equations of Galerkin to stability problems of rectangular plates with free edges and subjected to uniformly distributed follower forces. Comput. Meth. Appl. Mech. Eng. 37, 341–365 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Higuchi K., Dowell E.H.: Effect of structural damping on flutter of plates with a follower force. AIAA J. 30(3), 820–825 (1992)

    Article  MATH  Google Scholar 

  17. Gajewski A., Cupial P.: Optimal structural design of annular plate compressed by non-conservative forces. Int. J. Solids Struct. 29, 1283–1292 (1992)

    Article  MATH  Google Scholar 

  18. Chonan S.: Vibration and stability of annular plates under conservative and non-conservative loads. J. Sound Vibr. 80, 413–420 (1982)

    Article  Google Scholar 

  19. Sasaki M., Chonan S.: Vibration and stability of elastically supported circular plates under conservative and non-conservative loads. J. Sound Vibr. 103(1), 99–108 (1985)

    Article  Google Scholar 

  20. Jayaraman G., Struthers A.: Divergence and flutter instability of elastic specially orthotropic plates subject to follower forces. J. Sound Vibr. 281, 357–373 (2005)

    Article  Google Scholar 

  21. Zuo Q.H., Schreyer H.L.: Flutter and divergence instability of nonconservative beams and plates. Int. J. Solids Struct. 33(9), 1355–1367 (1996)

    Article  MATH  Google Scholar 

  22. Liao C.L., Lee Z.Y.: Elastic stability of skew laminated composite plates subjected to biaxial follower forces. Int. J. Numer. Meth. Eng. 36, 1825–1847 (1993)

    Article  MATH  Google Scholar 

  23. Kim J.H., Kim H.S.: A study on the dynamic stability of plates under a follower force. Comput. Struct. 74, 351–363 (2000)

    Article  Google Scholar 

  24. Kim J.H., Park J.H.: On the dynamic stability of rectangular plates subjected to intermediate follower forces. J. Sound Vibr. 209(5), 882–888 (1998)

    Article  Google Scholar 

  25. Kumar L.R., Datta P.K., Prabhakara D.L.: Dynamic instability characteristics of laminated plates subjected to partial follower edge load with damping. Int. J. Mech. Sci. 45, 1429–1448 (2003)

    Article  MATH  Google Scholar 

  26. Dowell E.H.: Nonlinear oscillations of a fluttering plate. AIAA J. 4(7), 1267–1275 (1966)

    Article  Google Scholar 

  27. Guo X., Mei C.: Using aeroelastic modes for nonlinear panel flutter at arbitrary supersonic yawed angle. AIAA J. 41(2), 272–279 (2003)

    Article  Google Scholar 

  28. Srinivansan R.S., Babu B.J.C.: Flutter analysis of cantilever quadrilateral plates. J. Sound Vibr. 98, 45–53 (1995)

    Article  Google Scholar 

  29. Katsikadelis J.T.: The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies. Theoret. Appl. Mech. 27, 13–38 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Katsikadelis J.T., Armenakas A.E.: A new boundary equation solution to the plate problem. ASME J. Appl. Mech. 56, 364–374 (1989)

    Article  MATH  Google Scholar 

  31. Katsikadelis J.T.: Boundary Elements: Theory and Applications. Elsevier, Amsterdam (2002)

    Google Scholar 

  32. Katsikadelis J.T., Nerantzaki M.S.: The boundary element method for nonlinear problems. Eng. Anal. Bound. Elem. 23, 365–373 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Katsikadelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babouskos, N., Katsikadelis, J.T. Flutter instability of damped plates under combined conservative and nonconservative loads. Arch Appl Mech 79, 541–556 (2009). https://doi.org/10.1007/s00419-008-0290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0290-x

Keywords

Navigation