Skip to main content
Log in

Genesis of the multiscale approach for materials with microstructure

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an overview of the origin of multiscale approaches in mechanics. While the pioneer molecular models of linear elastic bodies by Navier, Cauchy and Poisson were contradicted by experiments, the phenomenological energetic approach by Green still seems suitable for simple materials only. Voigt’s molecular model, here reinterpreted in the light of contemporary mechanics, reconciled the two approaches providing a conceptual guideline for developing constitutive models based on a direct link between continuum and discrete solid mechanics. Such a theoretical background proves to be especially suitable for new complex materials. An example referred to masonry-like materials is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips R.: Crystals, Defects and Microstructures: Modeling Across Scales. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Rapaport D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. Rhee M., Zbib H.M., Hirth J.P., Huang H., de la Rubia T.: Models for long/short range interactions and cross slip in 3D dislocation simulation of BCC single crystals. Model. Simul. Mater. Sci. Eng. 6, 467–492 (1998)

    Article  Google Scholar 

  4. Pugno N., Carpinteri A., Ippolito M., Mattoni A., Colombo L.: Atomistic fracture: QFM vs MD. Eng. Fract. Mech. 75, 1794–1803 (2008)

    Article  Google Scholar 

  5. Mura T.: Micromechanics of Defects in Solids. Kluwer, Boston (1987)

    Google Scholar 

  6. Forest S.: Milieux Continus Generalises et Matériaux Hétérogènes. École des Mines de Paris, Paris (2006)

    Google Scholar 

  7. Ostoja-Starzewski M.: Microstructural Randomness and Scaling in Mechanics of Materials. Taylor & Francis, Boca Raton (2008)

    MATH  Google Scholar 

  8. Vander Giessen, E., Wu, T.Y. (eds): Advances in Applied Mechanics. Academic Press, San Diego (1999)

    Google Scholar 

  9. Xiao Guo Z.: Multiscale Materials Modelling. Woodhead Publishing Limited, Cambridge (2007)

    Google Scholar 

  10. Trovalusci, P., (ed.): Multiscale mechanical modelling of complex materials and engineering applications. Int. J. Multiscale Comput. Eng. 5(2) (2007)

  11. Sanchez-Palencia, E., Zaoui, A. (eds.): Homogenization techniques for composite media. In: Lecture Notes in Physics, vol. 272, Springer, Berlin (1987)

  12. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1993)

    MATH  Google Scholar 

  13. Geymonat G., Muller G., Triantafyllidis N.: Homogenization of non-linearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Ration. Mech. Anal. 122, 231–290 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ponte Castañeda P., Suquet P.: Nonlinear composites. Adv. Appl. Mech. 34, 171–303 (1998)

    Article  Google Scholar 

  15. Miehe C., Schotte J., Lambrecht M.: Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J. Mech. Phys. Solids 50(10), 2123–2167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Smyshlyaev V.P., Cherednichenko K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Computational homogenization. In: CISM Lectures (in press) (2005)

  18. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193, 5525–5550 (2004)

    Article  MATH  Google Scholar 

  19. Ostoja-Starzewski M., Boccara S.D., Jasiuk I.: Couple-stress moduli and characteristic length of a two-phase composite. Mech. Res. Commun. 26(4), 387–396 (1999)

    Article  MATH  Google Scholar 

  20. Forest S., Pradel F., Sab K.: Asymptotic Analysis of Heterogeneous Cosserat Media. Int. J. Solids Struct. 38, 4585–4608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Onck P.R.: Cosserat modelling of cellular solids. C. R. Méc. 330, 717–722 (2002)

    Article  MATH  Google Scholar 

  22. Peerlings R.H.J., Fleck N.A.: Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. Eng. 2(4), 599–619 (2004)

    Article  Google Scholar 

  23. Trovalusci P., Masiani R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40, 1281–1297 (2003)

    Article  MATH  Google Scholar 

  24. Trovalusci P., Masiani R.: A multifield model for blocky materials based on multiscale description. Int. J. Solids Struct. 42, 5778–5794 (2005)

    Article  MATH  Google Scholar 

  25. Sansalone V., Trovalusci P., Cleri F.: Multiscale modelling of materials by a multifield approach: Microscopic stress and strain distribution in fiber-matrix composites. Acta Mater. 54(13), 3485–3492 (2006)

    Article  Google Scholar 

  26. Trovalusci P., Augusti G.: A continuum model with microstructure for materials with flaws and inclusions. J. Phys. IV(8), 383–390 (1998)

    Google Scholar 

  27. Sansalone V., Trovalusci P., Cleri F.: Multiscale modelling of composite materials by a multifield finite element approach. Int. J. Multiscale Comput. Eng. 3(4), 463–480 (2005)

    Article  Google Scholar 

  28. Sansalone V., Trovalusci P.: A numerical investigation of structure–property relations in fibre composite materials. Int. J. Multiscale Comput. Eng. 5(2), 141–152 (2007)

    Article  Google Scholar 

  29. Trovalusci, P., Rega, G.:Elastic waves in heterogeneous materials as in multiscale-multifield continua. In: Proceedings of Estonian Academy of Science Physics Mathematics, vol. 56(2), pp. 100–107 (2007)

  30. Ortiz M., Phillips R.: Nanomechanics of defect in solids. In: Giessen, E., Wu, T. (eds) Advances in Applied Mechanics, vol. 36, pp. 1–73. Academic Press, San Diego (1999)

    Google Scholar 

  31. Nguyen O.T., Ortiz M.: Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior. J. Mech. Phys. Solids 50, 1727–1741 (2002)

    Article  MATH  Google Scholar 

  32. Curtin W.A., Miller R.E.: Atomistic/continuum coupling computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2003)

    Article  Google Scholar 

  33. Devincre B., Roos A., Groh S. : Boundary problems in DD simulations, in thermodynamics, microstructures and plasticity. In: Finel, A. et al. (eds) NATO Science Series: II: Mathematics, Physics and Chemistry, vol. 108, pp. 275. Kluwer, Dordrecht (2003)

    Google Scholar 

  34. Colombo L., Ippolito M., Mattoni A., Cleri F.: Theory and atomic-scale simulation of brittle fracture in complex materials. In: Buzio, R., Valbusa, U. (eds) Advances in Contact Mechanics: Implications for Materials Science, Engineering and Biology, pp. 83–116. Transworld Research Network, Kerala (2006)

    Google Scholar 

  35. Di Paola, M., Zingales, M.: Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. (2008) (in press)

  36. Palla, P., Ippolito, M., Giordano, S., Mattoni, A., Colombo, L.: Atomistic approach to nanomechanics: concepts, methods, and (some) applications. The nanomechanics in Italy. In: Pugno N. (ed.) Transworld Research Network, Kerala, p. 75 (2007) (in press)

  37. Navier, C.-L.-M.-H.: Mémoire sur le lois de l’équilibre et du mouvement des corps solides élastiques (1821), Mémoires de l’Academie des Sciences de l’Institut de France, s. II, vol. 7, pp. 375–393 (1827)

  38. Cauchy A.-L.: Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou nonélastique. Exerc. Math. 3, 160–187 (1828)

    Google Scholar 

  39. Cauchy, A.-L.: Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle, Exercices de Mathématiques, 3, 188–213, 1822, 1827; Oeuvres, s. 2(8), 227–252 (1828)

  40. Poisson, S.D.: Mémoire sur l’équilibre et le mouvement des corps élastiques 1828. Mémoires de l’Académie des Sciences de l’Institut de France, s. II, vol. 8, pp. 357–380 (1829)

  41. Poisson S.D.: Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. Journalde l’École Polytechnique 13(20), 1–174 (1831)

    Google Scholar 

  42. Clausius R.: On a mechanical theorem applicable to heat. Philos. Mag. 40, 122–127 (1870)

    Google Scholar 

  43. Maxwell J.C.: Van der Waals on the continuity of the gaseous and liquid states. Nature 10, 471–478 (1874)

    Article  Google Scholar 

  44. Einstein, A.: Eine Neue Bestimmung der Moleküldimensionen. Annalen der Physik, 19, 289–306, 1906. 34, 591–592. (Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen) (1911)

  45. Voigt, W.: Theoretische Studien über die Elasticitätsverhältnisse der Kristalle. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, XXXIV (1887)

  46. Voigt, W.: L’état actuel de nos connoissances sur l’élasticité des cristaux. Rapports présentés au Congrès international de Physique, Paris, Gauthier—Villars 277–347 (1900)

  47. Voigt W.: Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig (1910)

    Google Scholar 

  48. Navier, C.-L.-M.-H.: Résumé des leçons données a l’École des ponts et chaussées [. . .]. Troisième édition avec des notes et des appendices, par M. Barré de Saint-Venant, Paris, Dunod (1864)

  49. Green, G.: On the laws of Reflection and Refraction of Light at the common surface of Two Non-crystallized Media’, 1839. Mathematical Papers of the late George Green, pp. 243–269; 281, 290, Hérman, Paris (1903)

  50. Del Piero, G., Owen, D.R. (eds.): Multiscale modelling in continuum mechanics and structured deformations. In: CISM Courses and Lectures No. 447, Springer, Wien (2004)

  51. Ericksen J.L.: Special topics in Elastostatics. In: Yih, C.-S. (eds) Advances in Applied Mechanics, vol. 17, pp. 189–241. Academic Press, New York (1977)

    Chapter  Google Scholar 

  52. Capecchi D., Ruta G., Tazzioli R.: Enrico Betti. Teoria dell’elasticità. Hevelius, Benevento (2006)

    Google Scholar 

  53. Fresnel, J.: Supplément au mémoire sur la double réfraction 1821. Oeuvres Complètes, Imprimerie Impériale, Paris (1868)

  54. Ericksen, J.L.: The Cauchy and Born hypotheses for crystals, in Phase Transformations and Material Instabilities in Solids. In: Gurtin M.E. (ed.) pp. 61–76. Academic Press, New York (1984)

  55. Friesecke G., Theil F.: Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12, 445–478 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  56. Cauchy A.-L.: De la pression ou tension dans un système de points matériels. Exerc. Math. 3, 214–238 (1828)

    Google Scholar 

  57. Capecchi, D., Ruta, G., Trovalusci, P.: Voigt’s contribution to molecular models in elasticity. Arch. Hist. Exact Sci. (2008) (submitted)

  58. Love E.H.: A Treatise on the Mathematical Theory of Elasticity, 2nd edn. University Press, Cambridge (1906)

    Google Scholar 

  59. Bravais A.: Études cristallographiques. Gauthier-Villars, Paris (1866)

    Google Scholar 

  60. Marcolongo R.: Teoria matematica dello equilibrio dei corpi elastici. Hoepli, Milano (1904)

    MATH  Google Scholar 

  61. Poincaré H.: Leçons sur la théorie de l’élasticité. Georges Carré, Paris (1892)

    Google Scholar 

  62. Stakgold I.: The Cauchy relations in a molecular theory of elasticity. Q. Appl. Math. 8, 169–186 (1949)

    MathSciNet  Google Scholar 

  63. Poinsot L.: Théorie nouvelle de la rotation des corps. Journal de Mathématiques Pures et Appliquées 16(9–129), 289–336 (1851)

    Google Scholar 

  64. Thomson W., Tait P.G.: Treatise on Natural Philosophy, vol. 2. University Press, Cambridge (1867)

    Google Scholar 

  65. Cosserat E., Cosserat F.: Théorie des corps déformables. Herman et fils, Paris (1909)

    Google Scholar 

  66. Dalton, J.: on the absorption of gases by water and other liquids. In: Memoirs of the Literary and Philosophical Society of Manchester, 2nd Series, vol. 1, pp. 271–287 (Read 21 October 1803) (1805)

  67. Prout W.: On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms. Ann. Philos. 6, 321–330 (1815)

    Google Scholar 

  68. Brown, R.: A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag. 4, 161–173 (1828)

    Google Scholar 

  69. Thomson, J.J.: Cathode rays. Philos. Mag. 44 (1897)

  70. Drago A.: A new appraisal of old formulations of mechanics. Am. J. Phys. 72(3), 407–409 (2004)

    Article  Google Scholar 

  71. Murdoch I.: On the relationship between balance relations for generalized continua and molecular behaviour. Int. J. Eng. Sci. 25, 833–914 (1987)

    Article  Google Scholar 

  72. Capriz G., Podio-Guidugli P.: Structured continua from a lagrangian point of view. Annali di Matematica Pura ed Applicata IV(135), 1–25 (1983)

    Article  MathSciNet  Google Scholar 

  73. Pitteri M.: On statistical-kinetics model for generalized continua. Arch. Ration. Mech. Anal. 111(2), 99–120 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  74. Goddard J.D. : A general micromorphic theory of kinematics and stress in granular media. In: Garcia-Rojo, R. et al. (eds) Powder and Grains, vol. 1, pp. 129–134. Taylor and Francis, London (2005)

    Google Scholar 

  75. Miller R.E., Tadmor E.B.: The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9, 203–239 (2002)

    Article  Google Scholar 

  76. Curtin W.A., Miller R.E.: Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2003)

    Article  Google Scholar 

  77. Fago, M., Hayes, R.L., Carter, E.A., Ortiz, M.: Density–functional-theory-based local quasicontinuum method: prediction of dislocation nucleation, 95. Phys. Rev. Lett. B 70, 100102 (2005)

    Google Scholar 

  78. Askar A.: Lattice Dynamical Foundation of Continuum Theories 1943. World Scientific, Singapore (1985)

    Google Scholar 

  79. Kunin A.: Elastic Media with Microstructure-I (One-dimensional Models). Springer, Berlin (1982)

    MATH  Google Scholar 

  80. Bardenhagen S.G., Triantafyllidis N.: Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models. J. Mech. Phys. Solids 42, 111–139 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  81. Fish, J., Chen, W.: Discrete-to-continuum bridging based on multigrid principles. In: Computer Methods in Applied Mechanics and Engineering, 193(17–20) Multiple Scale Methods for Nanoscale Mechanics and Materials, pp. 1693–1711 (2004)

  82. Braides A., Dal Maso G., Garroni A.: Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146, 23–58 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  83. Blanc X., Le Bris C., Lions P.L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164(4), 341–381 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  84. Alicandro, R., Cicalese, M., Gloria, A.: Integral representation of the bulk limit of a general class of energies for bounded and unbounded spin systems. Electronic publication (http://cvgmt.sns.it/people/cicalese/) (2007)

  85. Khisaeva Z.F., Ostoja-Starzewski M.: On the size of RVE in finite elasticity of random composites. J. Elast. 85, 153–173 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  86. Ostoja-Starzewski, M., Du, X., Khisaeva, Z.F., Li, W.: Comparison of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. In: Trovalusci, P. (ed.) Multiscale Mechanical Modelling of Complex Materials and Engineering Applications. Int. J. Multiscale Comput. Eng. 5(2), 73–82(2007)

  87. Mattoni L., Colombo C., : Atomistic study of the interaction between a microcrack and a hard inclusion in beta-SiC’. Phys. Rev. Lett. B 70, 094108 (2004)

    Google Scholar 

  88. Irving J.H., Kirkwood J.G.: The statistical mechanical theory of transport processes IV: the equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)

    Article  MathSciNet  Google Scholar 

  89. Noll W.: Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der Statistischen Mechanik J. Ration. Mech. Anal. 4, 627–646 (1955)

    MathSciNet  Google Scholar 

  90. Trovalusci, P., Masiani, R. (1996) Material symmetries of micropolar continua equivalent to lattices. Int. J. Solids Struct. 36(14), 1999, 2091–2108

    Google Scholar 

  91. Capriz G.: Continua with Microstructure. Springer, Berlin (1889)

    Google Scholar 

  92. Eringen A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    MATH  Google Scholar 

  93. Svendsen B.: On the continuum modeling of materials with kinematic structure. Acta Mech. 152, 49–79 (2001)

    Article  MATH  Google Scholar 

  94. Pitteri, M., Zanzotto, G.: Continuum Models for Twinning in Crystals, Applied Mathematics and Mathematical Computation Series. CRC Press Inc, West Palm Beach (2002)

  95. Naimark O.B.: Defect-induced transitions as mechanismsof plasticity and failure in multifield continua. In: Capriz, G., Mariano, P.M. (eds) Advances in Multifield Theories for Continua with Substructure, Birkhäuser, Boston (2004)

    Google Scholar 

  96. Goddard J.D.: Entropy and material instability in the quasi-static mechanics of granular media. In: Exadaktylos, G.E., Vardoulakis, I.G. (eds) Bifurcation, Instabilities, Degradation in Geomechanics, pp. 144–153. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Trovalusci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trovalusci, P., Capecchi, D. & Ruta, G. Genesis of the multiscale approach for materials with microstructure. Arch Appl Mech 79, 981–997 (2009). https://doi.org/10.1007/s00419-008-0269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0269-7

Keywords

Navigation