Skip to main content
Log in

Fracture behavior of a bonded magneto-electro-elastic rectangular plate with an interface crack

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper the anti-plane problem for an interface crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane magneto-electrical loads is investigated. The interface crack is assumed to be either magneto-electrically impermeable or permeable, and the position of the interface crack is arbitrary. The finite Fourier transform method is employed to reduce the mixed boundary-value problem to triple trigonometric series equations. The dislocation density functions and proper replacement of the variables are introduced to reduce these series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together with the corresponding single-valued condition is approximated as a system of linear algebra equations which can be easily solved. Field intensity factors and energy release rates are determined numerically and discussed in detail. Numerical results show the effects of crack configuration and loading combination parameters on the fracture behaviors of crack tips according to energy release rate criterion. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Suchtelen J. (1972). Product properties: a new application of composite materials. Phillips Res. Reports 27: 28–37

    Google Scholar 

  2. Avellaneda M. and Harshe G. (1994). Magnetoelectric effect in piezoelectric/magnetostrictive multiplayer (2–2) composites. J. Intell. Mater. Syst. Struct. 5: 501–513

    Article  Google Scholar 

  3. Nan C.W. (1994). Magneto-electric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B B50: 6082–6088

    Article  Google Scholar 

  4. Benveniste Y. (1995). Magneto-electric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B B51: 16424–16427

    Article  Google Scholar 

  5. Wang X.M. and Shen Y.P. (1996). The conservation laws and path-independent integrals for linear electro-magneto-elastic media with an application. Int. J. Solids Struct. 33: 865–878

    Article  MATH  Google Scholar 

  6. Huang J.H. and Kuo W.S. (1997). The analysis of piezoelectric/piezomagnetic composite materials containing an ellipsoidal inhomogeneity. J. Appl. Phys. 81: 1378–1386

    Article  Google Scholar 

  7. Li J.Y. and Dunn M.L. (1998). Micromechanics of magneto-electro-elastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9: 404–416

    Article  Google Scholar 

  8. Pan E. (2001). Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME J. Appl. Mech. 68: 608–618

    Article  MATH  Google Scholar 

  9. Lage R.G., Soares C.M.M., Soares C.A.M. and Reddy J.N. (2004). Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Comp. Struct. 82: 1293–1301

    Article  Google Scholar 

  10. Wang B.L. and Mai Y.W. (2004). Fracture of piezoelectromagnetic materials. Mech. Res. Commun. 31: 65–73

    Article  MATH  Google Scholar 

  11. Zhou Z.G., Wang B. and Sun Y.G. (2004). Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42: 1155–1167

    Article  Google Scholar 

  12. Chue C.H. and Liu T.J.C. (2005). Magneto-electro-elastic antiplane analysis of a biomaterial BaTiO3-CoFe2O4 composite wedge with an interface crack. Theor. Appl. Frac. Mech. 44: 275–296

    Article  Google Scholar 

  13. Feng W.J., Xue Y. and Zou Z.Z. (2006). Crack growth of an interface crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric magnetic impact. Theor. Appl. Frac. Mech. 43: 376–394

    Article  Google Scholar 

  14. Hu K.Q., Li G.Q. and Zhong Z. (2006). Fracture of a rectangular piezoelectromagnetic body. Mech. Res. Commun. 33: 482–492

    Article  MATH  Google Scholar 

  15. Li R. and Kardomateas G.A. (2006). The Mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials. ASME J. Appl. Mech. 73: 220–227

    Article  MATH  Google Scholar 

  16. Feng W.J. and Su R.K.L. (2006). Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip. Int. J. Solids Struct. 43: 5196–5216

    Article  MATH  Google Scholar 

  17. Feng W.J. and Su R.K.L. (2006). Scattering of SH waves by an arc-shaped interface crack between a cylindrical magneto-electro-elastic inclusion and matrix with the symmetry of 6 mm. Acta. Mech. 183: 81–102

    Article  MATH  Google Scholar 

  18. Hu K.Q., Kang Y.L. and Li G.Q. (2006). Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta. Mech. 182: 1–16

    Article  MATH  Google Scholar 

  19. Song Z.F. and Sih G.C. (2003). Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor. Appl. Frac. Mech. 39: 189–207

    Article  Google Scholar 

  20. Gao C.F., Kessler H. and Balke H. (2003). Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int. J. Eng. Sci. 41: 969–981

    Article  MathSciNet  Google Scholar 

  21. Gao C.F., Kessler H. and Balke H. (2003). Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. Int. J. Eng. Sci. 41: 983–994

    Article  MathSciNet  Google Scholar 

  22. Gao C.F., Tong P. and Zhang T.Y. (2003). Interfacial crack problems in magneto-electroelastic solids. Int. J. Eng. Sci. 41: 2105–2121

    Article  Google Scholar 

  23. Tian W.Y. and Gabbert U. (2004). Multiple crack interaction problem in magnetoelectroelastic solids. Eur. J. Mech. A/solids 23: 599–614

    Article  MATH  Google Scholar 

  24. Sih G.C. and Yu H.Y. (2005). Volume fraction effect of magnetoelectroelastic composite on enhancement and impediment of crack growth. Comp. Struct. 68: 1–11

    Article  Google Scholar 

  25. Tian W.Y. and Rajapakse R.K.N.D. (2005). Fracture analysis of magnetoelectroelastic solids by using path independent integrals. Int. J. Frac. 131: 311–335

    Article  MATH  Google Scholar 

  26. Wang B.L. and Mai Y.W. (2007). Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44: 387–398

    Article  MATH  Google Scholar 

  27. Niraula O.P. and Wang B.L. (2006). A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading. Acta Mech. 187: 151–168

    Article  MATH  Google Scholar 

  28. Zhao M.H., Yang F. and Liu T. (2006). Analysis of a penny-shaped crack in a magneto-electro-elastic medium. Philos. Mag. 86: 4397–4416

    Article  Google Scholar 

  29. Erdogan F. and Gupta G.D. (1972). On the numerical solution of singular integral equations. Q. Appl. Math. 29: 525–539

    MATH  MathSciNet  Google Scholar 

  30. Li X.F. and Lee K.Y. (2004). Electroelastic behavior of a rectangular piezoelectric ceramic with an antiplane shear crack at arbitrary position. Eur. J. Mech. A/Solids 23: 645–658

    Article  MATH  Google Scholar 

  31. Pak Y.E. (1990). Crack extension force in a piezoelectric material. J. Appl. Mech. 57: 647–653

    MATH  Google Scholar 

  32. Soh A.K., Fang D.N. and Lee K.L. (2000). Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur. J. Mech. A/Solids 19: 961–977

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-J. Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, RKL., Feng, WJ. Fracture behavior of a bonded magneto-electro-elastic rectangular plate with an interface crack. Arch Appl Mech 78, 343–362 (2008). https://doi.org/10.1007/s00419-007-0165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0165-6

Keywords

Navigation