Skip to main content
Log in

An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The article concerns the complex determination process of the material parameters governing micropolar granular material with elasto-plastic material properties. Proceeding from a gradient-based method, we split the total set of parameters and the overall identification procedure into two major categories. These are, firstly, the identification of the parameters of a standard non-polar elasto-plastic continuum, and, secondly, the determination of the remaining parameters governing the micropolar part of the constitutive model. While the first set of parameters can be obtained from homogeneous triaxial tests on, e. g., granular, cohesive-frictional materials like sand, the second set can only be determined from inhomogeneous tests, such as biaxial tests including the onset and the development of shear bands. Following this, one can obtain the first part of the identification process from a simple inverse algorithm applied to the elasto-plastic material model of non-polar solids, while the second part requires a fully inverse computation in the sense of a back analysis of the underlying boundary-value problem. In the present article, this procedure is carried out by use of the semi-discrete sensitivity analysis. Finally, the whole model is applied to the data of Hostun sand taken at the universities of Grenoble and Stuttgart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosserat, E., Cosserat, F.: Théorie des corps déformables, A. Hermann et fils, Paris, 1909 (Theory of Deformable Bodies, NASA TT F-11 561, 1968)

  2. Ehlers W., Ramm E., Diebels S. and D’Addetta G.A. (2003). From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40: 6681–6702

    Article  MATH  MathSciNet  Google Scholar 

  3. D’Addetta G.A., Ramm E., Diebels S. and Ehlers W. (2004). A particle center based homogenization strategy for particle assemblies. Eng. Comput. 21: 360–383

    Article  MATH  Google Scholar 

  4. Lade P.V. and Duncan J.M. (1973). Cubical triaxial tests on cohesionless soil. ASCE J. Soil Mech. Found. Div. 99: 793–812

    Google Scholar 

  5. Yamada Y. and Ishihara K. (1979). Anisotropic deformation characteristic of sand under three dimensional stress conditions. Soils Found. 19: 79–94

    Google Scholar 

  6. Desrues J., Lanier J. and Stutz P. (1985). Localization of the deformation in tests on sand samples. Eng. Fract. Mech. 21: 909–921

    Article  Google Scholar 

  7. Kim M.K. and Lade P.V. (1988). Single hardening constitutive model for frictional materials, I. Plastic potential function. Comput. Geotech. 5: 307–324

    Article  Google Scholar 

  8. Lade P.V. and Kim M.K. (1988). Single hardening constitutive model for frictional material, II. Yield criterion and plastic work contours. Comput. Geotech. 6: 13–29

    Article  Google Scholar 

  9. Viggiani G., Küntz M. and Desrues J. (2001). An experimental investigation of the relationships between grain size distribution and shear banding in sand. In: Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., and Ramm, E. (eds) Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, Lecture Notes in Physics 586., pp 301–350. Springer, Berlin

    Google Scholar 

  10. Ehlers W. and Volk W. (1998). On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. Int. J. Solids Struct. 35: 4597–4617

    Article  MATH  Google Scholar 

  11. Kafadar C.B. and Eringen A.C. (1971). Micropolar media I: the classical theory. Int. J. Eng. Sci. 9: 271–305

    Article  Google Scholar 

  12. Nowacki W. (1986). Theory of Asymmetric Elasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  13. Mühlhaus H.-B. and Vardoulakis I. (1987). The thickness of shear bands in granular materials. Géotechnique 37: 271–283

    Article  Google Scholar 

  14. Steinmann P. (1994). A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Struct. 31: 1063–1084

    Article  MATH  MathSciNet  Google Scholar 

  15. Biot M.A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid, I.Low frequency range. J. Acoust. Soc. Am. 28: 168–178

    Article  MathSciNet  Google Scholar 

  16. Bowen R.M. (1980). Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18: 1129–1148

    Article  MATH  Google Scholar 

  17. de Boer R. (2000). Theory of Porous Media. Springer, Berlin

    MATH  Google Scholar 

  18. Ehlers W. (1993). Constitutive equations for granular materials in geomechanical context. In: Hutter, K. (eds) Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337, pp 313–402. Springer, Wien

    Google Scholar 

  19. Ehlers W. (2002). Foundations of multiphasic and porous materials. In: Ehlers, W. and Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp 3–86. Springer, Berlin

    Google Scholar 

  20. Ehlers W. and Müllerschön H. (2000). Parameter identification of a macroscopic granular soil model applied to dense Berlin sand. Granul. Matter 2: 105–112

    Article  Google Scholar 

  21. Müllerschön, H.: Spannungs-Verzerrungsverhalten granularer Materialien am Beispiel von Berliner Sand. Dissertation, Bericht Nr. II-6 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart (2000)

  22. Ehlers W. (1995). A single-surface yield function for geomaterials. Arch. Appl. Mech. 65: 246–259

    Article  MATH  Google Scholar 

  23. Luenberger D.V. (1973). Introduction to Linear and Nonlinear Programming. Addison-Wesley, Massachusetts

    MATH  Google Scholar 

  24. Heinz J. and Spellucci P. (1994). A succesful implementation of the Pantoja-Mayne SQP-Method. Optim. Methods Softw. 4: 1–28

    Article  Google Scholar 

  25. Mahnken R. and Stein E. (1996). Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int. J. Plast. 12: 451–479

    Article  MATH  Google Scholar 

  26. Mahnken R. and Steinmann P. (2001). A finite element algorithm for parameter identification of material models for fluid-saturated porous media. Int. J. Numeric. Anal. Methods Geomech. 25: 415–434

    Article  MATH  Google Scholar 

  27. Thielecke, F.: Parameteridentifizierung von Simulationsmodellen für das viskoplastische Verhalten von Metallen, Theorie, Numerik, Anwendung, Dissertation, Braunschweiger Schriften zur Mechanik No. 34-1998. Mechanik-Zentrum, TU Braunschweig (1998)

  28. Adelmann H. and Haftka R. (1986). Sensitivity analysis of discrete structural systems. AIAA J. 24: 823–832

    Article  Google Scholar 

  29. Kleiber M. (1997). Parameter Sensitivity in Nonlinear Mechanics. Wiley, Chichester

    Google Scholar 

  30. Volk, W.: Untersuchung des Lokalisierungsverhaltens mikropolarer poröser Medien mit Hilfe der Cosserat-Theorie, Dissertation, Bericht Nr. II-2 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart (1999)

  31. Ehlers W. (1991). Toward finite theories of liquid-saturated elasto-plastic porous media. Int. J. Plast. 7: 443–475

    Article  Google Scholar 

  32. Haupt P. (2000). Continuum Mechanics and Theory of Materials. Springer, Berlin

    MATH  Google Scholar 

  33. Perzyna P. (1966). Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9: 243–377

    Google Scholar 

  34. Ehlers W. and Ellsiepen P. (2001). Theoretical and numerical methods in environmental continuum mechanics based on the Theory of Porous Media. In: Schrefler, B.A. (eds) Environmental Geomechanics, CISM Courses and Lectures No. 417, pp 1–81. Springer, Wien

    Google Scholar 

  35. Ehlers W., Ellsiepen P. and Ammann M. (2001). Time- and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. Int. J. Numeric. Methods Eng. 52: 503–526

    Article  MATH  Google Scholar 

  36. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien, Dissertation, Bericht Nr. II-3 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart (1999)

  37. Törnig W. and Spellucci P. (1990). Numerische Mathematik für Ingenieure und Physiker—Numerische Methoden der Analysis, Vol. 2. Springer, Berlin

    Google Scholar 

  38. Mokni M. and Desrues J. (1998). Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand. Mech. Cohes. Frict. Mater. 4: 419–441

    Article  Google Scholar 

  39. Mahnken R. and Stein E. (1996). A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods Appl. Mech. Eng. 136: 225–258

    Article  MATH  Google Scholar 

  40. Larsen R.J. and Marx M.L. (1986). An Introduction to Mathematical Statistics and Its Applications. Prentice-Hall, New Jersey

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ehlers.

Additional information

Dedicated to Professor Franz Ziegler on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, W., Scholz, B. An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Arch Appl Mech 77, 911–931 (2007). https://doi.org/10.1007/s00419-007-0162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0162-9

Keywords

Navigation