Skip to main content
Log in

An analytical solution to non-axisymmetric heat transfer with viscous dissipation for non-Newtonian fluids in laminar forced flow

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Forced convection heat transfer in a non-Newtonian fluid flow inside a pipe whose external surface is subjected to non-axisymmetric heat loads is investigated analytically. Fully developed laminar velocity distributions obtained by a power-law fluid rheology model are used, and viscous dissipation is taken into account. The effect of axial heat conduction is considered negligible. The physical properties are assumed to be constant. We consider that the smooth change in the velocity distribution inside the pipe is piecewise constant. The theoretical analysis of the heat transfer is performed by using an integral transform technique – Vodicka’s method. An important feature of this approach is that it permits an arbitrary distribution of the surrounding medium temperature and an arbitrary velocity distribution of the fluid. This technique is verified by a comparison with the existing results. The effects of the Brinkman number and rheological properties on the distribution of the local Nusselt number are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A ilm , B ilm :

constants in Eqs.(28) and (39)

Br :

Brinkman number = \(\kappa u^{{1 + \nu}}_{\rm max} R^{1- \nu} /[\lambda (T_{0{\rm b}} - T_{\rm s})]\)

c :

specific heat (J kg −1 K −1)

G m :

function defined by Eq. (31)

h :

outside heat transfer coefficient (W m −2 K −1)

\(\widehat{h}\) :

local heat transfer coefficient (W m −2 K −1)

H :

dimensionless outside heat transfer coefficient = hR

J m():

Bessel function of the first kind of order m

n :

number of partitions

Nu :

local Nusselt number = \(2\widehat{h}R/\lambda\)

P m :

function defined by Eq. (24)

Q :

heat generation term = Br[(1 + ν)/ν]ν+1 η (1+ν)/ν

r :

radial coordinate

R :

pipe radius (m)

T :

fluid temperature (K)

u :

axial fluid velocity (m/s), Eq. (2)

u m :

mean axial fluid velocity (m/s)

u max :

maximum fluid velocity = (1 + 3ν)u m/(1 + ν)

U :

dimensionless velocity = u/u m

W m :

function defined by Eq. (27)

x :

axial coordinate

X ilm :

Eigenfunctions corresponding to the lth eigenvalue for the ith region, Eqs. (28) and (39)

Y m():

Bessel function of the second kind of order m

\(\phi\) :

circumferential coordinate

Φ lm :

function corresponding to the lth eigenvalue defined by Eqs.(37) and (39)

γ lm :

lth eigenvalues

η :

dimensionless radial coordinate = r/R

κ :

power-law model parameter (Pa s ν)

λ :

thermal conductivity (W m −1 K −1)

ν :

power-law model index

θ :

dimensionless fluid temperature = (TT s)/(T 0bT s)

ρ :

fluid density (kg m −3)

τ rx :

shear stress (Pa), Eq. (1)

ξ :

dimensionless axial coordinate =λ x/(u m R 2 ρ c)

0:

inlet

0b:

bulk quantity at inlet

∞:

surrounding

B:

bulk

i :

region number

s:

representative

w:

wall

References

  1. Aydin O. (2005). Effects of viscous dissipation on the heat transfer in a forced pipe flow. Part 2: Thermally developing flow. Energy Conv. Manage. 46: 3091–3102

    Article  Google Scholar 

  2. Barletta A., Magyari E. (2006). The Graetz–Brinkman problem in a plane-parallel channel with adiabatic-to-isothermal entrance. Int. Comm. Heat Mass Transf. 33: 677–685

    Article  Google Scholar 

  3. Barletta A., Magyari E. (2007). Forced convection with viscous dissipation in the thermal entrance region of a circular duct with prescribed wall heat flux. Int. J. Heat Mass Transf. 50: 26–35

    Article  MATH  Google Scholar 

  4. Barletta A., Pulvirenti B. (2000). Forced convection with slug flow and viscous dissipation in a rectangular duct. Int. J. Heat Mass Transf. 43: 725–740

    Article  MATH  Google Scholar 

  5. Barletta A., Schio E.R. (2000). Periodic forced convection with axial heat conduction in a circular duct. Int. J. Heat Mass Transf. 43: 2949–2960

    Article  MATH  Google Scholar 

  6. Barletta A., Zanchini E. (1996). Thermal entrance region for laminar forced convection in a circular tube with a power law wall heat flux. Int. J. Heat Mass Transf. 39: 1265–1272

    Article  Google Scholar 

  7. Barron R.F., Wang X., Ameel T.A., Warringt R.O. (1997). The Graetz problem extended to slip-flow. Int. J. Heat Mass Transf. 40: 1817–1823

    Article  MATH  Google Scholar 

  8. Bhattacharyya T.K., Roy D.N. (1970). Laminar heat transfer in a round tube with variable circumferential or arbitrary wall heat flux. Int J. Heat Mass Transf. 13: 1057–1060

    Article  Google Scholar 

  9. Chiba, R., Izumi, M., Sugano, Y.: An analytical solution to the Graetz problem with viscous dissipation for non-Newtonian fluids. In: Sunden, B., Brebbia, C.A. (eds.) Advanced computational methods in heat transfer IX, pp.23–32, Heat transfer 2006, Southampton, UK 2006. WIT Press, Southampton (2006)

  10. Coelho P.M., Pinho F.T., Oliveira P.J. (2003). Thermal entry flow for a viscoelastic fluid: the Graetz problem for the PTT model. Int. J. Heat Mass Transf. 46: 3865–3880

    Article  MATH  Google Scholar 

  11. Cotta R.M., Ozisik M.N. (1986). Laminar forced convection to non-Newtonian fluids in ducts with prescribed wall heat flux. Int. Comm. Heat Mass Transf. 13: 325–334

    Article  Google Scholar 

  12. Cotta R.M., Ozisik M.N. (1986). Laminar forced convection of power-law non-Newtonian fluids inside ducts. Warme Stoffubertragung 20: 211–218

    Article  Google Scholar 

  13. Faghri M., Welty J.R. (1977). Analysis of heat transfer for laminar power law pseudoplastic fluids in a tube with an arbitrary circumferential wall heat flux. AIChE J. 23: 288–294

    Article  Google Scholar 

  14. Graetz L. (1883). Uber die Warmeleitungsfahighevon von Flussingkeiten, Part 1. Annalen der Physik und Chemie 18: 79–94

    Google Scholar 

  15. Graetz L. (1885). Uber die Warmeleitungsfahighevon von Flussingkeiten, Part 2. Annalen der Physik und Chemie 25: 337–357

    Google Scholar 

  16. Jeong H.E., Jeong J.T. (2006). Extended Graetz problem including streamwise conduction and viscous dissipation in microchannel. Int. J. Heat Mass Transf. 49: 2151–2157

    Article  Google Scholar 

  17. Kim T.Y., Baek S.W. (1996). Thermal development of radiatively active pipe flow with nonaxisymmetric circumferential convective heat loss. Int. J. Heat Mass Transf. 39: 2969–2976

    Article  MATH  Google Scholar 

  18. Kuznetsov A.V., Xiong M., Nield D.A. (2003). Thermally developing forced convection in a porous medium: circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects. Transp. Porous Media 53: 331–345

    Article  MathSciNet  Google Scholar 

  19. Lahjomri J., Oubarra A. (1999). Analytical solution of the Graetz problem with axial conduction. Trans. ASME J. Heat Transf. 121: 1078–1082

    Google Scholar 

  20. Larrode F.E., Housiadas C., Drossinos Y. (2000). Slip-flow heat transfer in circular tubes. Int. J. Heat Mass Transf. 43: 2669–2680

    Article  MATH  Google Scholar 

  21. Lin T.F., Hawks K.H., Leidenfrost W. (1983). Analysis of viscous dissipation effect on thermal entrance heat transfer in laminar pipe flows with convective boundary conditions. Warme Stoffubertragung 17: 97–105

    Article  Google Scholar 

  22. Male P., Croon M.H.J.M., Tiggelaar R.M., Berg A., Schouten J.C. (2004). Heat and mass transfer in a square microchannel with asymmetric heating. Int. J. Heat Mass Transf. 47: 87–99

    Article  Google Scholar 

  23. Min T., Yoo J.Y. (1999). Laminar convective heat transfer of a Bingham plastic in a circular pipe with uniform wall heat flux: The Graetz problem extended. Trans. ASME J. Heat Transf. 121: 556–563

    Google Scholar 

  24. Min T., Yoo J.Y., Choi H. (1997). Laminar convective heat transfer of a Bingham plastic in a circular pipe –I. Analytical approach– thermally fully developed flow and thermally developing flow (the Graetz problem extended). Int. J. Heat Mass Transf. 40: 3025–3037

    Article  MATH  Google Scholar 

  25. Minkowycz W.J., Haji-Sheikh A. (2006). Heat transfer in parallel plates and circular porous passages with axial conduction. Int. J. Heat Mass Transf. 49: 2381–2390

    Article  Google Scholar 

  26. Morini G.L. (2000). Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat flux. Int. J. Heat Mass Transf. 43: 741–755

    Article  MATH  Google Scholar 

  27. Nield D.A., Kuznetsov A.V. (2005). Thermally developing forced convection in a channel occupied by a porous medium saturated by a non-Newtonian fluid. Int. J. Heat Mass Transf. 48: 1214–1218

    Article  Google Scholar 

  28. Nield D.A., Kuznetsov A.V., Xiong M. (2003). Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects. Int. J. Heat Mass Transf. 46: 643–651

    Article  MATH  Google Scholar 

  29. Nield D.A., Kuznetsov A.V., Xiong M. (2004). Thermally developing forced convection in a porous medium: parallel plate or circular duct with isothermal wall. J. Porous Media 7: 19–27

    Article  MATH  Google Scholar 

  30. Olcer N.Y. (1968). On a generalized multiregion Graetz problem. Acta Mech 5: 22–36

    Article  Google Scholar 

  31. Oliveira P.J., Coelho P.M., Pinho F.T. (2004). The Graetz problem with viscous dissipation for FENE-P fluids. J. Non-Newtonian Fluid Mech. 121: 69–72

    Article  MATH  Google Scholar 

  32. Ozisik M.N., Sadeghipour M.S. (1982). Analytic solution for the eigenvalues and coefficients of the Graetz problem with third kind boundary condition. Int. J. Heat Mass Transf. 25: 736–739

    Article  Google Scholar 

  33. Quaresma J.N.N., Cotta R.M. (1994). Exact solutions for thermally developing tube flow with variable wall heat flux. Int. Comm. Heat Mass Transf. 21: 729–742

    Article  Google Scholar 

  34. Quaresma J.N.N., Macedo E.N. (1998). Integral transform solution for the forced convection of Herschel–Bulkley fluids in circular tubes and parallel-plates ducts. Braz. J. Chem. Eng. 15: 77–89

    Article  Google Scholar 

  35. Shigechi T., Davaa G., Momoki S., Jambal O. (2003). Laminar heat transfer with viscous dissipation and fluid axial heat conduction for modified power law fluids flowing in parallel plates with one plate moving. JSME Int. J. Ser. B 46: 539–548

    Article  Google Scholar 

  36. Sugano Y. (1984). Dynamic thermal stresses in a circular cylinder subjected to asymmetric heating. Ing. Arch. 54: 168–181

    Article  MATH  Google Scholar 

  37. Tunc G., Bayazitoglu Y. (2001). Heat transfer in microtubes with viscous dissipation. Int. J. Heat Mass Transf. 44: 2395–2403

    Article  MATH  Google Scholar 

  38. Valko P.P. (2005). Solution of the Graetz-Brinkman problem with the Laplace transform Galerkin method. Int. J. Heat Mass Transf. 48: 1874–1882

    Article  Google Scholar 

  39. Vick B., Ozisik M.N., Ullrich D.F. (1983). Effects of axial conduction in laminar tube flow with convective boundaries. J. Frankl. Inst. 316: 159–173

    Article  MATH  MathSciNet  Google Scholar 

  40. Vodicka, V.: Linear heat conduction in laminated bodies (in German). Math. Nach. 14, 47–55 (1955)

    Google Scholar 

  41. Weigand B. (1996). An exact analytical solution for the extended turbulent Graetz problem with Dirichlet wall boundary conditions for pipe and channel flows. Int. J. Heat Mass Transf. 39: 1625–1637

    Article  Google Scholar 

  42. Weigand B., Kanzamar M., Beer H. (2001). The extended Graetz problem with piecewise constant wall heat flux for pipe and channel flows. Int. J. Heat Mass Transf. 44: 3941–3952

    Article  MATH  Google Scholar 

  43. Weigand B., Lauffer D. (2004). The extended Graetz problem with piecewise constant wall temperature for pipe and channel flows. Int. J. Heat Mass Transf. 47: 5303–5312

    Article  MATH  Google Scholar 

  44. Weigand B., Schwartzkopff T., Sommer T.P. (2002). A numerical investigation of the heat transfer in a parallel plate channel with piecewise constant wall temperature boundary conditions. Trans. ASME J. Heat Transf. 124: 626–634

    Article  Google Scholar 

  45. Weigand B., Wolf M., Beer H. (1997). Heat transfer in laminar and turbulent flows in the thermal entrance region of concentric annuli: axial heat conduction effects in the fluid. Heat Mass Transf. 33: 67–80

    Article  Google Scholar 

  46. Weigand B., Wrona F. (2003). The extended Graetz problem with piecewise constant wall heat flux for laminar and turbulent flows inside concentric annuli. Heat Mass Transf. 39: 313–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Chiba.

About this article

Cite this article

Chiba, R., Izumi, M. & Sugano, Y. An analytical solution to non-axisymmetric heat transfer with viscous dissipation for non-Newtonian fluids in laminar forced flow. Arch Appl Mech 78, 61–74 (2008). https://doi.org/10.1007/s00419-007-0141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0141-1

Keywords

Navigation