Skip to main content
Log in

Calculation of the J-integral for limited permeable cracks in piezoelectrics

  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

This paper deals with the calculation of the J-integral for electrically limited permeable cracks in piezoelectrics. The electromechanical J-integral is extended to account for electrical crack surface charge densities representing electric fields inside the crack. To avoid the costly implementation of the line integral along the crack faces, an alternative is proposed replacing the line integral by a simple jump term across the crack faces. Previous work by other authors related to the same subject is critically illuminated. The derivation was inspired by the Dugdale- Barenblatt cohesive zone model and yields an expression containing solely the local jump of displacements and electric potentials across the crack faces. This approach is shown to be exact for the Griffth crack.Numerical examples give evidence that the simplified approach works well for arbitrary crack configurations too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abendroth, M.; Groh, U.; Kuna, M.; Ricoeur, A.: Finite-element computation of the electromechanical J-Integral for 2-D and 3-D crack analysis. Int J Fracture 114 (2002) 359–378

  2. Balke, H.; Kemmer, G.; Drescher, J.: Some remarks on fracture mechanics of piezoelectric solids. In: Proceedings of micro materials (1997) 398–401 Deutscher Verband für Materialforschung und -prüfung e.V. Berlin english

  3. Barenblatt, G.I.: Mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7 Academic press (1962)

  4. Cherepanov, G.: Rasprostranenie trechin v sploshnoi srede (About crack advance in the continuum). Prikladnaja Matematika i Mekhanica 31 (1967) 478–488

    Google Scholar 

  5. Dascalu, C.; Maugin, G.A.: Energy– release rates and path– independent integrals in electroelastic crack propagation. Int J Eng Sci 32 (1994) 755–765

    Google Scholar 

  6. Dugdale, D.: Yielding of steel sheets containing slits. J Mech Phys Solids 8 (1960) 100–104

    Google Scholar 

  7. Gruebner, O.: University of Karlsruhe, Department of Mechanical Engineering, FE-Analyse von Rissspitzenfeldern in Piezokeramiken unter Berücksichtigung der elektrischen Permeabilität der Risse und des nichtlinearen Materialverhaltens (2001) PhD Thesis

  8. Gruebner, O.; Kamlah, M.; Munz, D.: Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng Frac Mech 70 (2003) 1399–1413

  9. Hao, T.H.; Shen, Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng Frac Mech 47 (1994) 793–802

    Google Scholar 

  10. Kemmer, G.; Balke, H.: Numerische Berechnung integraler Beanspruchungsgrößen bei Rissen in Piezokeramiken. ABAQUS-Anwendertreffen Insbruck (1997) 18–26

  11. Kemmer, G.: Berechnung von elektromechanischen Intensitätsparametern bei Rissen in Piezokeramiken VDI Verlag Düsseldorf Nr. 261 Reihe 18 (2000)

  12. Kuna, M.: Energiebilanzintegrale für Risse in piezoelektrischen Werkstoffen unter elektrischen und mechanischen Beanspruchungen. Technische Mechanik 15 (1995) 195–204

  13. Kuna, M.: Finite element analyses of crack problems in piezoelectric structures. Comput Mater Sci 13 (1998) 67–80

    Google Scholar 

  14. Landis, C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41 (2004) 6291–6315

    Google Scholar 

  15. Maugin, G.A.; Epstein, M.: The electroelastic energy–momentum tensor. Proc R Soc Lond A 433 (1991) 299–312

    Google Scholar 

  16. McMeeking, R.M.: Electrostrictive forces near crack like flaws. J Appl Math Phys 40 (1989) 615–627

    Google Scholar 

  17. McMeeking, R.M.: Crack tip energy release rate for a piezoelectric compact tension specimen. Eng Frac Mech 64 (1999) 217–244

    Google Scholar 

  18. McMeeking, R.: The energy release rate for a Griffith crack in a piezoelectric material. Eng Frac Mech 71 (2004) 1169–1183

    Google Scholar 

  19. Pak, Y.E.: Crack extension force in a piezoelectric material. J Appl Mech 57 (1990) 647–653

    Google Scholar 

  20. Pak, Y.E.: Linear electro– elastic fracture mechanics of piezoelectric materials. Int J Frac 54 (1992) 79–100

    Google Scholar 

  21. Park, S.B.; Sun, C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int J Frac 70 (1995) 203–216

    Google Scholar 

  22. Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronautica 3 (1976) 671–683

    Google Scholar 

  23. Rice, J.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35 (1968) 379–386

    Google Scholar 

  24. Ricoeur, A.; Kuna, M.: Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceramic Soc 23 (2003) 1313–1328

    Google Scholar 

  25. Shang, F.; Kuna, M.; Abendroth, M.: Finite element analyses of three-dimensional crack problems in piezoelectric structures. Eng Frac Mech 70 (2003) 143–160

  26. Sosa, H.: Plane problems in piezoelectric media with defects. Int J Solids Struct 28 (1991) 491–505

    Google Scholar 

  27. Wippler, K.; Ricoeur, A.; Kuna, M.: Towards the computation of electrically permeable cracks in piezoelectrics. Eng Frac Mech 71 (2004) 2567–2587

  28. Zhang, T.-Y.; Zhao, M.; Tong, P.: Fracture of piezoelectric ceramics. Adv Appl Mech 38 (2002) 147–289

  29. Zhang, T.Y.; Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor Appl Frac Mech 41 (2004) 339–379

    Google Scholar 

  30. Zhu, T.; Yang, W.: Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater 45 (1997) 4695–4702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ricoeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricoeur, A., Enderlein, M. & Kuna, M. Calculation of the J-integral for limited permeable cracks in piezoelectrics. Archive of Applied Mechanics 74, 536–549 (2005). https://doi.org/10.1007/s00419-004-0370-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-004-0370-5

Keywords

Navigation