Adami C, Bianchi R, Pula G, Donato R (2004) S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. Biochim Biophys Acta 1742(1–3):169–177. https://doi.org/10.1016/j.bbamcr.2004.09.008
CAS
Article
PubMed
Google Scholar
Al Nimer F, Elliott C, Bergman J, Khademi M, Dring AM, Aeinehband S, Bergenheim T, Romme Christensen J, Sellebjerg F, Svenningsson A, Linington C, Olsson T, Piehl F (2016) Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol Neuroimmunol Neuroinflamm 3(1):e191. https://doi.org/10.1212/nxi.0000000000000191
Article
PubMed
PubMed Central
Google Scholar
Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200. https://doi.org/10.1038/nature17623
CAS
Article
PubMed
PubMed Central
Google Scholar
Antel J, Antel S, Caramanos Z, Arnold DL, Kuhlmann T (2012) Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol 123(5):627–638. https://doi.org/10.1007/s00401-012-0953-0
Article
PubMed
Google Scholar
Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, Fernandes A (2016) S100B as a potential biomarker and therapeutic target in multiple sclerosis. Mol Neurobiol 53(6):3976–3991. https://doi.org/10.1007/s12035-015-9336-6
CAS
Article
PubMed
Google Scholar
Behrangi N, Lorenz P, Kipp M (2021) Oligodendrocyte lineage marker expression in eGFP-GFAP transgenic mice. J Mol Neurosci 71(11):2237–2248. https://doi.org/10.1007/s12031-020-01771-w
CAS
Article
PubMed
Google Scholar
Benardais K, Gudi V, Gai L, Nessler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M (2014) Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 62(10):1659–1670. https://doi.org/10.1002/glia.22706
Article
PubMed
Google Scholar
Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW, Jacques FH, Akira S, David S (2012) Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60(7):1145–1159. https://doi.org/10.1002/glia.22342
Article
PubMed
Google Scholar
Bhat RV, Axt KJ, Fosnaugh JS, Smith KJ, Johnson KA, Hill DE, Kinzler KW, Baraban JM (1996) Expression of the APC tumor suppressor protein in oligodendroglia. Glia 17(2):169–174. https://doi.org/10.1002/(SICI)1098-1136(199606)17:2<169::AID-GLIA8>3.0.CO;2-Y
Bin JM, Harris SN, Kennedy TE (2016) The oligodendrocyte-specific antibody “CC1” binds quaking 7. J Neurochem 139(2):181–186. https://doi.org/10.1111/jnc.13745
CAS
Article
PubMed
Google Scholar
Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20(1):73–83. https://doi.org/10.1016/0022-510x(73)90119-6
CAS
Article
PubMed
Google Scholar
Brakeman JS, Gu SH, Wang XB, Dolin G, Baraban JM (1999) Neuronal localization of the Adenomatous polyposis coli tumor suppressor protein. Neuroscience 91(2):661–672. https://doi.org/10.1016/s0306-4522(98)00605-8
CAS
Article
PubMed
Google Scholar
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. https://doi.org/10.1523/jneurosci.4178-07.2008
CAS
Article
PubMed
PubMed Central
Google Scholar
Cambron M, D’Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J (2012) White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. J Cereb Blood Flow Metab 32(3):413–424. https://doi.org/10.1038/jcbfm.2011.193
CAS
Article
PubMed
PubMed Central
Google Scholar
Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1:129–169. https://doi.org/10.1016/j.bbcan.2012.03.008
CAS
Article
Google Scholar
Chun BY, Kim JH, Nam Y, Huh MI, Han S, Suk K (2015) Pathological Involvement of astrocyte-derived lipocalin-2 in the demyelinating optic neuritis. Invest Ophthalmol Vis Sci 56(6):3691–3698. https://doi.org/10.1167/iovs.15-16851
CAS
Article
PubMed
Google Scholar
Correale J, Farez MF (2015) The role of astrocytes in multiple sclerosis progression. Front Neurol 6:180. https://doi.org/10.3389/fneur.2015.00180
Article
PubMed
PubMed Central
Google Scholar
Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45(1):17–23. https://doi.org/10.1006/geno.1997.4896
CAS
Article
PubMed
Google Scholar
Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J (2004) Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci 27(4):453–465. https://doi.org/10.1016/j.mcn.2004.07.008
CAS
Article
PubMed
Google Scholar
Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57
CAS
Article
Google Scholar
Du J, Yi M, Zhou F, He W, Yang A, Qiu M, Huang H (2021) S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS. Mol Brain 14(1):154. https://doi.org/10.1186/s13041-021-00865-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Liu J, Moulson A, Plemel JR, Tetzlaff W (2018) Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nat Commun 9(1):3066. https://doi.org/10.1038/s41467-018-05473-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience 54(1):15–36. https://doi.org/10.1016/0306-4522(93)90380-x
CAS
Article
PubMed
Google Scholar
Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274(34):23996–24006. https://doi.org/10.1074/jbc.274.34.23996
CAS
Article
PubMed
Google Scholar
Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4(3):229–237. https://doi.org/10.1111/j.1750-3639.1994.tb00838.x
CAS
Article
PubMed
Google Scholar
Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106(4):489–498. https://doi.org/10.1016/s0092-8674(01)00471-8
CAS
Article
PubMed
Google Scholar
Ferreira AC, Der Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F (2015) From the periphery to the brain: lipocalin-2, a friend or foe? Prog Neurobiol 131:120–136. https://doi.org/10.1016/j.pneurobio.2015.06.005
CAS
Article
PubMed
Google Scholar
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917–921. https://doi.org/10.1038/nature03104
CAS
Article
PubMed
Google Scholar
Floderer M, Prchal-Murphy M, Vizzardelli C (2014) Dendritic cell-secreted lipocalin2 induces CD8+ T-cell apoptosis, contributes to T-cell priming and leads to a TH1 phenotype. PLoS ONE 9(7):e101881. https://doi.org/10.1371/journal.pone.0101881
CAS
Article
PubMed
PubMed Central
Google Scholar
Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14. https://doi.org/10.1042/bj3180001
CAS
Article
PubMed
PubMed Central
Google Scholar
Foo LC, Dougherty JD (2013) Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia 61(9):1533–1541. https://doi.org/10.1002/glia.22539
Article
PubMed
PubMed Central
Google Scholar
Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3(9):705–714. https://doi.org/10.1038/nrn917
CAS
Article
PubMed
Google Scholar
Gingele S, Henkel F, Heckers S, Moellenkamp TM, Hummert MW, Skripuletz T, Stangel M, Gudi V (2020) Delayed demyelination and impaired remyelination in aged mice in the cuprizone model. Cells. https://doi.org/10.3390/cells9040945
Article
PubMed
PubMed Central
Google Scholar
Goldberg J, Clarner T, Beyer C, Kipp M (2015) Anatomical distribution of cuprizone-induced lesions in C57BL6 mice. J Mol Neurosci 57(2):166–175. https://doi.org/10.1007/s12031-015-0595-5
CAS
Article
PubMed
Google Scholar
Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, Trebst C, Stangel M (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138. https://doi.org/10.1016/j.brainres.2009.06.005
CAS
Article
PubMed
Google Scholar
Gudi V, Skuljec J, Yildiz O, Frichert K, Skripuletz T, Moharregh-Khiabani D, Voss E, Wissel K, Wolter S, Stangel M (2011) Spatial and temporal profiles of growth factor expression during CNS demyelination reveal the dynamics of repair priming. PLoS One 6(7):e22623. https://doi.org/10.1371/journal.pone.0022623
CAS
Article
PubMed
PubMed Central
Google Scholar
Gudi V, Gingele S, Skripuletz T, Stangel M (2014) Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 8:73. https://doi.org/10.3389/fncel.2014.00073
CAS
Article
PubMed
PubMed Central
Google Scholar
Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C (2005) Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia 51(2):81–97. https://doi.org/10.1002/glia.20184
CAS
Article
PubMed
Google Scholar
Heckers S, Held N, Kronenberg J, Skripuletz T, Bleich A, Gudi V, Stangel M (2017) Investigation of cuprizone inactivation by temperature. Neurotox Res 31(4):570–577. https://doi.org/10.1007/s12640-017-9704-2
CAS
Article
PubMed
Google Scholar
Hibbits N, Yoshino J, Le TQ, Armstrong RC (2012) Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. ASN Neuro 4(6):393–408. https://doi.org/10.1042/an20120062
CAS
Article
PubMed
Google Scholar
Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92(1–2):38–49. https://doi.org/10.1016/s0165-5728(98)00168-4
CAS
Article
PubMed
Google Scholar
Ip JP, Noçon AL, Hofer MJ, Lim SL, Müller M, Campbell IL (2011) Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J Neuroinflammation 8:124. https://doi.org/10.1186/1742-2094-8-124
CAS
Article
PubMed
PubMed Central
Google Scholar
Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K (2013a) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol 191(10):5204–5219. https://doi.org/10.4049/jimmunol.1301637
CAS
Article
PubMed
Google Scholar
Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013b) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27(3):1176–1190. https://doi.org/10.1096/fj.12-222257
CAS
Article
PubMed
Google Scholar
Jha MK, Lee S, Park DH, Kook H, Park KG, Lee IK, Suk K (2015) Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 49:135–156. https://doi.org/10.1016/j.neubiorev.2014.12.006
CAS
Article
PubMed
Google Scholar
Jung M, Brune B, Hotter G, Sola A (2016) Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury. Sci Rep 6:21950. https://doi.org/10.1038/srep21950
CAS
Article
PubMed
PubMed Central
Google Scholar
Jung M, Weigert A, Mertens C, Rehwald C, Brune B (2017) Iron handling in tumor-associated macrophages-is there a new role for lipocalin-2? Front Immunol 8:1171. https://doi.org/10.3389/fimmu.2017.01171
CAS
Article
PubMed
PubMed Central
Google Scholar
Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043
CAS
Article
PubMed
PubMed Central
Google Scholar
Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16(1):79–106. https://doi.org/10.1177/1073858409342593
CAS
Article
PubMed
Google Scholar
Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283(Pt B):541–549. https://doi.org/10.1016/j.expneurol.2016.03.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, Strasburger H, Herbst L, Alexis M, Karnell J, Davidson T, Dutta R, Goverman J, Bergles D, Calabresi PA (2019) Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun 10(1):3887. https://doi.org/10.1038/s41467-019-11638-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268(14):10425–10432
CAS
Article
Google Scholar
Krupenko SA (2009) FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 178(1–3):84–93. https://doi.org/10.1016/j.cbi.2008.09.007
CAS
Article
PubMed
Google Scholar
Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113–3130. https://doi.org/10.1523/JNEUROSCI.3467-12.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Lassmann H, Brück W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17(2):210–218. https://doi.org/10.1111/j.1750-3639.2007.00064.x
Article
PubMed
PubMed Central
Google Scholar
Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656. https://doi.org/10.1038/nrneurol.2012.168
CAS
Article
PubMed
Google Scholar
Lee S, Lee J, Kim S, Park JY, Lee WH, Mori K, Kim SH, Kim IK, Suk K (2007) A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol 179(5):3231–3241. https://doi.org/10.4049/jimmunol.179.5.3231
CAS
Article
PubMed
Google Scholar
Lee S, Park JY, Lee WH, Kim H, Park HC, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29(1):234–249. https://doi.org/10.1523/jneurosci.5273-08.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee HN, Jeon GS, Kim DW, Cho IH, Cho SS (2010) Expression of adenomatous polyposis coli protein in reactive astrocytes in hippocampus of kainic acid-induced rat. Neurochem Res 35(1):114–121. https://doi.org/10.1007/s11064-009-0036-3
CAS
Article
PubMed
Google Scholar
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K (2011) Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 286(51):43855–43870. https://doi.org/10.1074/jbc.M111.299248
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee SA, Noel S, Kurzhagen JT, Sadasivam M, Pierorazio PM, Arend LJ, Hamad AR, Rabb H (2020) CD4(+) T cell-derived NGAL modifies the outcome of ischemic acute kidney injury. J Immunol 204(3):586–595. https://doi.org/10.4049/jimmunol.1900677
CAS
Article
PubMed
Google Scholar
Leroy K, Duyckaerts C, Bovekamp L, Muller O, Anderton BH, Brion JP (2001) Increase of adenomatous polyposis coli immunoreactivity is a marker of reactive astrocytes in Alzheimer’s disease and in other pathological conditions. Acta Neuropathol 102(1):1–10. https://doi.org/10.1007/s004010000340
CAS
Article
PubMed
Google Scholar
Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, Pekny M, Chopp M (2014) Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62(12):2022–2033. https://doi.org/10.1002/glia.22723
Article
PubMed
PubMed Central
Google Scholar
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stüve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/wnl.0000000000000560
Article
PubMed
PubMed Central
Google Scholar
Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717. https://doi.org/10.1002/1531-8249(200006)47:6%3c707::aid-ana3%3e3.0.co;2-q
CAS
Article
PubMed
Google Scholar
Lumdsen CE (1970) The neuropathology of multiple sclerosis. Elsevier, Amsterdam
Google Scholar
Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH, Sousa N, Correia-Neves M, Palha JA (2008) Lipocalin 2 is a choroid plexus acute-phase protein. J Cereb Blood Flow Metab 28(3):450–455. https://doi.org/10.1038/sj.jcbfm.9600557
CAS
Article
PubMed
Google Scholar
Marques F, Mesquita SD, Sousa JC, Coppola G, Gao F, Geschwind DH, Columba-Cabezas S, Aloisi F, Degn M, Cerqueira JJ, Sousa N, Correia-Neves M, Palha JA (2012) Lipocalin 2 is present in the EAE brain and is modulated by natalizumab. Front Cell Neurosci 6:33. https://doi.org/10.3389/fncel.2012.00033
CAS
Article
PubMed
PubMed Central
Google Scholar
Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116. https://doi.org/10.1111/j.1750-3639.2001.tb00385.x
CAS
Article
PubMed
Google Scholar
Meheus LA, Fransen LM, Raymackers JG, Blockx HA, Van Beeumen JJ, Van Bun SM, Van de Voorde A (1993) Identification by microsequencing of lipopolysaccharide-induced proteins secreted by mouse macrophages. J Immunol 151(3):1535–1547
CAS
PubMed
Google Scholar
Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148(2):168–187. https://doi.org/10.1111/jnc.14574
CAS
Article
PubMed
Google Scholar
Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. https://doi.org/10.1016/j.pneurobio.2011.01.005
CAS
Article
PubMed
Google Scholar
Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89(1):13–21. https://doi.org/10.1002/jnr.22482
CAS
Article
PubMed
Google Scholar
Morel L, Chiang MSR, Higashimori H, Shoneye T, Iyer LK, Yelick J, Tai A, Yang Y (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37(36):8706–8717. https://doi.org/10.1523/jneurosci.3956-16.2017
CAS
Article
PubMed
PubMed Central
Google Scholar
Morel L, Men Y, Chiang MSR, Tian Y, Jin S, Yelick J, Higashimori H, Yang Y (2019) Intracortical astrocyte subpopulations defined by astrocyte reporter mice in the adult brain. Glia 67(1):171–181. https://doi.org/10.1002/glia.23545
Article
PubMed
Google Scholar
Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65(17):2702–2720. https://doi.org/10.1007/s00018-008-8059-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Nam Y, Kim JH, Seo M, Kim JH, Jin M, Jeon S, Seo JW, Lee WH, Bing SJ, Jee Y, Lee WK, Park DH, Kook H, Suk K (2014) Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues. J Biol Chem 289(24):16773–16789. https://doi.org/10.1074/jbc.M113.542282
CAS
Article
PubMed
PubMed Central
Google Scholar
Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, Illgen-Wilcke B (2002) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 36(1):20–42
CAS
Article
Google Scholar
Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. https://doi.org/10.1007/978-1-61779-452-0_3
CAS
Article
PubMed
PubMed Central
Google Scholar
Ono K, Takebayashi H, Ikenaka K (2009) Olig2 transcription factor in the developing and injured forebrain; cell lineage and glial development. Mol Cells 27(4):397–401. https://doi.org/10.1007/s10059-009-0067-2
CAS
Article
PubMed
Google Scholar
Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Brück W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(Pt 12):3165–3172. https://doi.org/10.1093/brain/awl217
Article
PubMed
Google Scholar
Pekny M (2001) Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. Prog Brain Res 132:23–30. https://doi.org/10.1016/s0079-6123(01)32062-9
CAS
Article
PubMed
Google Scholar
Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. https://doi.org/10.1152/physrev.00041.2013
Article
PubMed
Google Scholar
Ponath G, Park C, Pitt D (2018) The role of astrocytes in multiple sclerosis. Front Immunol 9:217. https://doi.org/10.3389/fimmu.2018.00217
CAS
Article
PubMed
PubMed Central
Google Scholar
Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55(2):165–177. https://doi.org/10.1002/glia.20445
Article
PubMed
PubMed Central
Google Scholar
Rathore KI, Berard JL, Redensek A, Chierzi S, Lopez-Vales R, Santos M, Akira S, David S (2011) Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury. J Neurosci 31(38):13412–13419. https://doi.org/10.1523/jneurosci.0116-11.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
Rickmann M, Wolff JR (1995) S100 immunoreactivity in a subpopulation of oligodendrocytes and Ranvier’s nodes of adult rat brain. Neurosci Lett 186(1):13–16. https://doi.org/10.1016/0304-3940(95)11269-3
CAS
Article
PubMed
Google Scholar
Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632. https://doi.org/10.1002/jemt.10303
CAS
Article
PubMed
Google Scholar
Salinas Tejedor L, Gudi V, Kucman V, Pul R, Gingele S, Sühs KW, Stangel M, Skripuletz T (2015) Oligodendroglial markers in the cuprizone model of CNS de- and remyelination. Histol Histopathol 30(12):1455–1464. https://doi.org/10.14670/hh-11-640
Article
PubMed
Google Scholar
Schmidt T, Awad H, Slowik A, Beyer C, Kipp M, Clarner T (2013) Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum. J Mol Neurosci 49(1):80–88. https://doi.org/10.1007/s12031-012-9896-0
CAS
Article
PubMed
Google Scholar
Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90(2):435–447. https://doi.org/10.1083/jcb.90.2.435
CAS
Article
PubMed
PubMed Central
Google Scholar
Senda T, Iino S, Matsushita K, Matsumine A, Kobayashi S, Akiyama T (1998) Localization of the adenomatous polyposis coli tumour suppressor protein in the mouse central nervous system. Neuroscience 83(3):857–866. https://doi.org/10.1016/s0306-4522(97)00459-4
CAS
Article
PubMed
Google Scholar
Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26(12):1585–1597. https://doi.org/10.14670/hh-26.1585
CAS
Article
PubMed
Google Scholar
Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgärtner W, Stangel M (2013) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136(Pt 1):147–167. https://doi.org/10.1093/brain/aws262
Article
PubMed
Google Scholar
Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8
Article
PubMed
Google Scholar
Steelman AJ, Thompson JP, Li J (2012) Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res 72(1):32–42. https://doi.org/10.1016/j.neures.2011.10.002
CAS
Article
PubMed
Google Scholar
Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B (2007) Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 8:2. https://doi.org/10.1186/1471-2202-8-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJ (2003) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13(3):329–339. https://doi.org/10.1111/j.1750-3639.2003.tb00032.x
Article
PubMed
Google Scholar
Tagge I, O’Connor A, Chaudhary P, Pollaro J, Berlow Y, Chalupsky M, Bourdette D, Woltjer R, Johnson M, Rooney W (2016) Spatio-temporal patterns of demyelination and remyelination in the cuprizone mouse model. PLoS One 11(4):e0152480. https://doi.org/10.1371/journal.pone.0152480
CAS
Article
PubMed
PubMed Central
Google Scholar
Tatsumi K, Takebayashi H, Manabe T, Tanaka KF, Makinodan M, Yamauchi T, Makinodan E, Matsuyoshi H, Okuda H, Ikenaka K, Wanaka A (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J Neurosci Res 86(16):3494–3502. https://doi.org/10.1002/jnr.21862
CAS
Article
PubMed
Google Scholar
Valerio-Gomes B, Guimaraes DM, Szczupak D, Lent R (2018) The absolute number of oligodendrocytes in the adult mouse brain. Front Neuroanat 12:90. https://doi.org/10.3389/fnana.2018.00090
CAS
Article
PubMed
PubMed Central
Google Scholar
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389. https://doi.org/10.1152/physrev.00042.2016
CAS
Article
PubMed
Google Scholar
Williams A, Piaton G, Lubetzki C (2007) Astrocytes–friends or foes in multiple sclerosis? Glia 55(13):1300–1312. https://doi.org/10.1002/glia.20546
Article
PubMed
Google Scholar
Winchenbach J, Düking T, Berghoff SA, Stumpf SK, Hülsmann S, Nave KA, Saher G (2016) Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice. F1000Res 5:2934. https://doi.org/10.12688/f1000research.10509.1
CAS
Article
PubMed
PubMed Central
Google Scholar
Xing C, Wang X, Cheng C, Montaner J, Mandeville E, Leung W, van Leyen K, Lok J, Wang X, Lo EH (2014) Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45(7):2085–2092. https://doi.org/10.1161/strokeaha.114.005733
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59(2):200–207. https://doi.org/10.1002/glia.21089
Article
PubMed
PubMed Central
Google Scholar