Histochemistry and Cell Biology

, Volume 149, Issue 4, pp 289–304 | Cite as

Ultrastructure and biological function of matrix vesicles in bone mineralization

Review

Abstract

Bone mineralization is initiated by matrix vesicles, small extracellular vesicles secreted by osteoblasts, inducing the nucleation and subsequent growth of calcium phosphate crystals inside. Although calcium ions (Ca2+) are abundant throughout the tissue fluid close to the matrix vesicles, the influx of phosphate ions (PO43−) into matrix vesicles is a critical process mediated by several enzymes and transporters such as ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis (ANK), and tissue nonspecific alkaline phosphatase (TNSALP). The catalytic activity of ENPP1 in osteoblasts generates inorganic pyrophosphate (PPi) intracellularly and extracellularly, and ANK may allow the intracellular PPi to pass through the plasma membrane to the outside of the osteoblasts. Although the extracellular PPi binds to growing hydroxyapatite crystals to prevent crystal overgrowth, TNSALP on the osteoblasts and matrix vesicles hydrolyzes PPi into PO43− monomers: the prevention of crystal growth is blocked, and PO43− monomers are supplied to matrix vesicles. In addition, PHOSPHO1 is thought to function inside matrix vesicles to catalyze phosphocoline, a constituent of the plasma membrane, consequently increasing PO43− in the vesicles. Accumulation of Ca2+ and PO43− inside the matrix vesicles then initiates crystalline nucleation associated with the inner leaflet of the matrix vesicles. Calcium phosphate crystals elongate radially, penetrate the matrix vesicle’s membrane, and finally grow out of the vesicles to form calcifying nodules, globular assemblies of needle-shaped mineral crystals retaining some of those transporters and enzymes. The subsequent growth of calcifying nodules appears to be regulated by surrounding organic compounds, finally leading to collagen mineralization.

Keywords

Matrix vesicle Mineralization ENPP1 TNSALP Calcifying nodule 

Notes

Acknowledgements

This study was partially supported by the Grants-in Aid for Scientific Research (Hasegawa T). The author expresses her gratitude to Prof. Norio Amizuka, Hokkaido University, for his critique of the manuscript.

Compliance with ethical standards

Conflict of interest

No potential conflicts of interest exist.

References

  1. Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520.  https://doi.org/10.1073/pnas.67.3.1513 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amizuka N (2003) Bone matrix proteins and bone quality; Histological evaluation. J Jpn Soc Bone Morphom 13(1):5–9Google Scholar
  3. Amizuka N, Ozawa H (1999) Calcium—basic, clinical, nutrition. In: Nishizawa Y, Siraki M, Ezawa I, Hirota T (eds) The national milk promotion association. Life Science Publishing Co. Ltd, Tokyo, pp 20–34Google Scholar
  4. Amizuka N, Li M, Kobayashi M, Hara K, Akahane S, Takeuchi K, Freitas PH, Ozawa H, Maeda T, Akiyama Y (2008) Vitamin K2, a gamma-carboxylating factor of gla-proteins, normalizes the bone crystal nucleation impaired by Mg-insufficiency. Histol Histopathol 23(11):1353–1366.  https://doi.org/10.14670/HH-23.1353 PubMedGoogle Scholar
  5. Amizuka N, Li M, Hara K, Kobayashi M, de Freitas PH, Ubaidus S, Oda K, Akiyama Y (2009) Warfarin administration disrupts the assembly of mineralized nodules in the osteoid. J Electron Microsc 58:55–65.  https://doi.org/10.1093/jmicro/dfp008 CrossRefGoogle Scholar
  6. Amizuka N, Hasegawa T, Oda K, Luiz de Freitas PH, Hoshi K, Li M, Ozawa H (2012) Histology of epiphyseal cartilage calcification and endochondral ossification. Front Biosci 4:2085–2100.  https://doi.org/10.2741/526 CrossRefGoogle Scholar
  7. Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72.  https://doi.org/10.1083/jcb.41.1.59 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millan JL (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164(3):841–847.  https://doi.org/10.1016/S0002-9440(10)63172-0 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Azuma K, Shiba S, Hasegawa T, Ikeda K, Urano T, Horie-Inoue K, Ouchi Y, Amizuka N, Inoue S (2015) Osteoblast-specific γ-glutamyl carboxylase-deficient mice display enhanced bone formation with aberrant mineralization. J Bone Miner Res 30:1245–1254.  https://doi.org/10.1002/jbmr.2463 CrossRefPubMedGoogle Scholar
  10. Bianco P, Hayashi Y, Silvestrini G, Termine JD, Bonucci E (1985) Osteonectin and Gla-protein in calf bone: ultrastructural immunohistochemical localization using the Protein A-gold method. Calcif Tissue Int 37:684–686.  https://doi.org/10.1007/BF02554931 CrossRefPubMedGoogle Scholar
  11. Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50.  https://doi.org/10.1016/S0022-5320(67)80034-0 CrossRefPubMedGoogle Scholar
  12. Bonucci E (1970) Fine structure and histochemistry of “calcifying globules” in epiphyseal cartilage. Z Zellforsch Mikrosk Anat 103:192–217.  https://doi.org/10.1007/BF00337312 CrossRefPubMedGoogle Scholar
  13. Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Relat Res 78:108–139.  https://doi.org/10.1097/00003086-197107000-00010 CrossRefPubMedGoogle Scholar
  14. Bonucci E, Gherardi G (1975) Histochemical and electron microscopy investigations on medullary bone. Cell Tissue Res 163:81–97.  https://doi.org/10.1007/BF00218592 CrossRefPubMedGoogle Scholar
  15. Boskey AL, Posner AS (1977) The role of synthetic and bone extracted Ca–phospholipid–PO4 complexes in hydroxyapatite formation. Calcif Tissue Res 23:251–258.  https://doi.org/10.1007/BF02012794 CrossRefPubMedGoogle Scholar
  16. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin-hydroxyapatite interactions in vitro: Inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159.  https://doi.org/10.1016/S0169-6009(08)80225-5 CrossRefGoogle Scholar
  17. Boyan BD, Schwartz Z, Swain LD, Khare A (1989) Role of lipids in calcification of cartilage. Anat Rec 224:211–219.  https://doi.org/10.1002/ar.1092240210 CrossRefPubMedGoogle Scholar
  18. Corsi A, Xu T, Chen XD, Boyde A, Liang J, Mankani M, Sommer B, Iozzo RV, Eichstetter I, Robey PG, Bianco P, Young MF (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers–Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189.  https://doi.org/10.1359/jbmr.2002.17.7.1180 CrossRefPubMedGoogle Scholar
  19. de Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103:1615–1623.  https://doi.org/10.1083/jcb.103.4.1615 CrossRefPubMedGoogle Scholar
  20. Gurley KA, Reimer RJ, Kingsley DM (2006) Biochemical and genetic analysis of ANK in arthritis and bone disease. Am J Hum Genet 79:1017–1029.  https://doi.org/10.1086/509881 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hale JE, Fraser JD, Price PA (1988) The identification of matrix Gla protein in cartilage. J Biol Chem 263(12):5820–5824PubMedGoogle Scholar
  22. Hall JG, Pauli RM, Wilson KM (1980) Maternal and fetal sequelae of anti-coagulation during pregnancy. Am J Med 68:122–140.  https://doi.org/10.1016/0002-9343(80)90181-3 CrossRefPubMedGoogle Scholar
  23. Hasegawa T, Li M, Hara K, Sasaki M, Tabata C, de Freitas PH, Hongo H, Suzuki R, Kobayashi M, Inoue K, Yamamoto T, Oohata N, Oda K, Akiyama Y, Amizuka N (2011) Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats. Biomed Res 32:259–269.  https://doi.org/10.2220/biomedres.32.259 CrossRefPubMedGoogle Scholar
  24. Hasegawa T, Sasaki M, Yamada T, Ookido I, Yamamoto T, Hongo H, Yamamoto T, Oda K, Yokoyama K, Amizuka N (2013) Histochemical examination of vascular medial calcification of aorta in klotho-deficient mice. J Oral Biosci 55(1):10–15.  https://doi.org/10.1016/j.job.2012.12.003 CrossRefGoogle Scholar
  25. Hasegawa T, Yamamoto T, Tsuchiya E, Hongo H, Tsuboi K, Kudo A, Abe M, Yoshida T, Nagai T, Khadiza N, Yokoyama A, Oda K, Ozawa H, de Freitas PHL, Li M, Amizuka N (2017) Ultrastructural and biochemical aspects of matrix vesicle-mediated mineralization. J Dent Sci Rev 53:34–45.  https://doi.org/10.1369/0022155416665577 CrossRefGoogle Scholar
  26. Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci USA 72(10):3925–3929.  https://doi.org/10.1073/pnas.72.10.3925 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270.  https://doi.org/10.1126/science.289.5477.265 CrossRefPubMedGoogle Scholar
  28. Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425(6961):977–980.  https://doi.org/10.1038/nature02079 CrossRefPubMedGoogle Scholar
  29. Hoshi K, Amizuka N, Oda K, Ikehara Y, Ozawa H (1997) Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem Cell Biol 107:183–191.  https://doi.org/10.1007/s004180050103 CrossRefPubMedGoogle Scholar
  30. Hoshi K, Ejiri S, Ozawa H (2001) Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Miner Res 16:289–298.  https://doi.org/10.1359/jbmr.2001.16.2.289 CrossRefPubMedGoogle Scholar
  31. Houston B, Seawright E, Jefferies D, Hoogland E, Lester D, Whitehead C, Farquharson C (1999) Identification and cloning of a novel phosphatase expressed at high levels in differentiating growth plate chondrocytes. Biochim Biophys Acta 1448:500–506.  https://doi.org/10.1016/S0167-4889(98)00153-0 CrossRefPubMedGoogle Scholar
  32. Houston B, Stewart AJ, Farquharson C (2004) PHOSPHO1—a novel phosphatase specifically expressed at sites of mineralisation in bone and cartilage. Bone 34:629–637.  https://doi.org/10.1016/j.bone.2003.12.023 CrossRefPubMedGoogle Scholar
  33. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64.  https://doi.org/10.1042/bj3170059 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Johnson K, Moffa A, Chen Y, Pritzker K, Goding J, Terkeltaub R (1999a) Matrix vesicle plasma membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J Bone Miner Res 14:883–892.  https://doi.org/10.1359/jbmr.1999.14.6.883 CrossRefPubMedGoogle Scholar
  35. Johnson K, Vaingankar S, Chen Y, Moffa A, Goldring M, Sano K, Jin-Hua P, Sali A, Goding J, Terkeltaub R (1999b) Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum 42:1986–1997. https://doi.org/10.1002/1529-0131(199909)42:9<1986::AID-ANR26>3.0.CO;2-OGoogle Scholar
  36. Johnson K, Hashimoto S, Lotz M, Pritzker K, Goding J, Terkeltaub R (2001a) Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification.Arthritis Rheum 44: 1071–1081. https://doi.org/10.1002/1529-0131(200105)44:5<1071::AID-ANR187>3.0.CO;2-3Google Scholar
  37. Johnson K, Pritzker K, Goding J, Terkeltaub R (2001b) The nucleoside triphosphate pyrophosphohydrolase isozyme PC-1 directly promotes cartilage calcification through chondrocyte apoptosis and increased calcium precipitation by mineralizing vesicles. J Rheumatol 28:2681–2691PubMedGoogle Scholar
  38. Johnson K, Goding J, Van Etten D, Sali A, Hu SI, Farley D, Krug H, Hessle L, Millán JL, Terkeltaub R (2003) Linked deficiencies in extracellular inorganic pyrophosphate (PPi) and osteopontin expression mediate pathologic ossification in PC-1 null mice. J Bone Miner Res 18:994–1004.  https://doi.org/10.1359/jbmr.2003.18.6.994 CrossRefPubMedGoogle Scholar
  39. Kato K, Nishimasu H, Okudaira S, Mihara E, Ishitani R, Takagi J, Aoki J, Nureki O (2012) Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling. Proc Natl Acad Sci USA 109:16876–16881.  https://doi.org/10.1073/pnas.1208017109 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kim HJ, Minashima T, McCarthy EF, Winkles JA, Kirsch T (2010) Progressive ankylosis protein (ANK) in osteoblasts and osteoclasts controls bone formation and bone remodeling. J Bone Miner Res 25(8):1771–1783.  https://doi.org/10.1002/jbmr.60 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kitaoka T, Tajima T, Nagasaki K, Kikuchi T, Yamamoto K, Michigami T, Okada S, Fujiwara I, Kokaji M, Mochizuki H, Ogata T, Tatebayashi K, Watanabe A, Yatsuga S, Kubota T, Ozono K (2017) Safety and efficacy of treatment with asfotase alfa in patients with hypophosphatasia: results from a Japanese clinical trial. Clin Endocrinol 87(1):10–19.  https://doi.org/10.1111/cen.13343 CrossRefGoogle Scholar
  42. Liu J, Nam HK, Campbell C, Gasque KC, Millán JL, Hatch NE (2014) Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alp(−/−) mouse model of infantile hypophosphatasia. Bone 67:81–94.  https://doi.org/10.1016/j.bone.2014.06.040 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mackenzie NC, Zhu D, Milne EM, van ‘t Hof R, Martin A, Darryl Quarles L, Millán JL, Farquharson C, MacRae VE (2012) Altered bone development and an increase in FGF-23 expression in Enpp1(−/−) mice. PLoS One 7:e32177.  https://doi.org/10.1371/journal.pone.0032177 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mark MP, Butler WT, Prince CW, Finkleman RD, Ruch J-V (1988) Developmental expression of 44-kDa phosphoprotein (osteopontin) and bone-carboxyglutamic acid (Gla)-containing protein (osteocalcin) in calcifying tissues of rat. Differentiation 37:123–136.  https://doi.org/10.1111/j.1432-0436.1988.tb00804.x CrossRefPubMedGoogle Scholar
  45. Matsuzawa T, Anderson HC (1971) Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem Cytochem 19:801–808.  https://doi.org/10.1177/19.12.801 CrossRefPubMedGoogle Scholar
  46. Millan JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341.  https://doi.org/10.1007/s11302-005-5435-6 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nakano Y, Beertsen W, van den Bos T, Kawamoto T, Oda K, Takano Y (2004) Site-specific localization of two distinct phosphatases along the osteoblast plasma membrane: tissue non-specific alkaline phosphatase and plasma membrane calcium ATPase. Bone 35:1077–1085.  https://doi.org/10.1016/j.bone.2004.07.009 CrossRefPubMedGoogle Scholar
  48. Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208(3):432–446. https://doi.org/10.1002/(SICI)1097-0177(199703)208:3<432::AID-AJA13>3.0.CO;2-1Google Scholar
  49. Oda K, Amaya Y, Fukushi-Irie M, Kinameri Y, Ohsuye K, Kubota I, Fujimura S, Kobayashi J (1999) A general method for rapid purification of soluble versions of glycosylphosphatidylinositol-anchored proteins expressed in insect cells: an application for human tissue-nonspecific alkaline phosphatase. J Biochem 126:694–699CrossRefPubMedGoogle Scholar
  50. Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19:271–273.  https://doi.org/10.1038/956 CrossRefPubMedGoogle Scholar
  51. Ozawa H (1983) Current concepts of the morphophysiology of matrix vesicle calcification. Connect Tissue 15:1–12Google Scholar
  52. Ozawa H (1985) Ultrastructural concepts on biological calcification; Focused on matrix vesicles. J Oral Biosci 27:751–774.  https://doi.org/10.2330/joralbiosci1965.27.751 Google Scholar
  53. Ozawa H (1986) Ultrastructural aspects on the biological calcification with special reference to freeze-substitution at liquid helium temperature. Electron Microsc 57–60, Proc. XIth Int. Cong, KyotoGoogle Scholar
  54. Ozawa H, Yamada M, Yajima T (1978) The ultrastructural and cytochemical aspects of matrix vesicles and calcification processes. In: Talmage RV, Ozawa H (eds) Formation and calcification of hard tissues. Shakai Hoken Pub, Tokyo, pp 9–57Google Scholar
  55. Ozawa H, Yamada M, Yamamoto T (1981) Ultrastructural observations on the location of lead and calcium in the mineralizing dentine of rat incisor. In: Ascenzi A, Bonucci E, de Bernard B (eds) Matrix Vesicles. Wiching Editore srl, Milano, pp 179–187Google Scholar
  56. Ozawa H, Hoshi K, Amizuka N (2008) Current concepts of bone mineralization. J Oral Biosci 50:1–14.  https://doi.org/10.2330/joralbiosci.50.1 CrossRefGoogle Scholar
  57. Pauli RM, Lian JB, Mosher DF, Suttie JW (1987) Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: Cues to the mechanism of teratogenicity of coumarin derivatives. Am J Hum Genet 41:566–583PubMedPubMedCentralGoogle Scholar
  58. Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73(5):1447–1451.  https://doi.org/10.1073/pnas.73.5.1447 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7:877–885.  https://doi.org/10.1002/jbmr.5650070804 CrossRefPubMedGoogle Scholar
  60. Roberts SJ, Stewart AJ, Sadler PJ, Farquharson C (2004) Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochem J 382(Pt 1):59–65.  https://doi.org/10.1042/BJ20040511 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Roberts S, Narisawa S, Harmey D, Millán JL, Farquharson C (2007) Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization. J Bone Miner Res 22:617–627.  https://doi.org/10.1359/jbmr.070108 CrossRefPubMedGoogle Scholar
  62. Rutsch R, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte P, Kalhoff H, Sano K, Boisvert WA, Superti-Furga A, Terkeltaub R (2001) PC-1 Nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J Pathol 158:543–554.  https://doi.org/10.1016/S0002-9440(10)63996-X CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Höhne W, Schauer G, Lehmann M, Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M, Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nürnberg P (2003) Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet 34:379–381.  https://doi.org/10.1038/ng1221 CrossRefPubMedGoogle Scholar
  64. Stewart AJ, Roberts SJ, Seawright E, Davey MG, Fleming RH, Farquharson C (2006) The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone 39(5):1000–1007.  https://doi.org/10.1016/j.bone.2006.05.014 CrossRefPubMedGoogle Scholar
  65. Takahashi T, Old LJ, Boyse EA (1970) Surface alloantigens of plasma cells. J Exp Med 131:1325–1341.  https://doi.org/10.1084/jem.131.6.1325 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Terkeltaub R, Rosenbach M, Fong F, Goding J (1994) Causal link between nucleotide pyrophosphohydrolase overactivity and increased intracellular inorganic pyrophosphate generation demonstrated by transfection of cultured fibroblasts and osteoblasts with plasma cell membrane glycoprotein-1. Arthritis Rheum 37:934–941.  https://doi.org/10.1002/art.1780370624 CrossRefPubMedGoogle Scholar
  67. Tesch W, Vandenbos T, Roschgr P, Fratzl-Zelman N, Klaushofer K, Beertsen W, Fratzl P (2003) Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase. J Bone Miner Res 18(1):117–125.  https://doi.org/10.1359/jbmr.2003.18.1.117 CrossRefPubMedGoogle Scholar
  68. Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11(1):45–51.  https://doi.org/10.1038/ng0995-45 CrossRefPubMedGoogle Scholar
  69. Weiner S (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Crit Rev Biochem 20:365–408.  https://doi.org/10.3109/10409238609081998 CrossRefPubMedGoogle Scholar
  70. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML, Hamdan MA, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millán JL, Skrinar AM, Crine P, Landy H (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366(10):904–913.  https://doi.org/10.1056/NEJMoa1106173 CrossRefPubMedGoogle Scholar
  71. Wuthier RE (1975) Lipid composition of isolated epiphyseal cartilage cells, membranes and matrix vesicles. Biochim Biophys Acta 409:128–143.  https://doi.org/10.1016/0005-2760(75)90087-9 CrossRefPubMedGoogle Scholar
  72. Yadav MC, Simão AM, Narisawa S, Huesa C, McKee MD, Farquharson C, Millán JL (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26(2):286–297.  https://doi.org/10.1002/jbmr.195 CrossRefPubMedGoogle Scholar
  73. Yadav MC, Bottini M, Cory E, Bhattacharya K, Kuss P, Narisawa S, Sah RL, Beck L, Fadeel B, Farquharson C, Millán JL (2016) Skeletal mineralization deficits and impaired biogenesis and function of chondrocyte-derived matrix vesicles in Phospho1(−/−) and Phospho1/Pi t1 double-knockout mice. J Bone Miner Res 31(6):1275–1286.  https://doi.org/10.1002/jbmr.2790 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yamada M (1976) Ultrastractural and cytochemical studies on the calcification of the tendon-bone joint. Arch Histol Jap 39:347–378.  https://doi.org/10.1679/aohc1950.39.347 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental MedicineHokkaido UniversitySapporoJapan

Personalised recommendations