Skip to main content
Log in

Hepatocyte-specific depletion of ubiquitin regulatory X domain containing protein 8 accelerates fibrosis in a mouse non-alcoholic steatohepatitis model

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Ubiquitin regulatory X domain-containing protein 8 (UBXD8) is engaged in the degradation of lipidated apolipoprotein B in hepatocytes. We previously showed that hepatocyte-specific UBXD8-deficient mice (U8-HKO) fed a moderately high-fat diet (31 kcal % fat) showed periportal macrovesicular steatosis along with a decrease in very low-density lipoprotein secretion, but did not develop fibrosis. In the present study, we examined whether U8-HKO mice show NASH-like phenotypes when fed a very high-fat diet (60 kcal % fat). U8-HKO mice and their age-matched littermates (control) were fed with two NASH model diets: choline-sufficient very high-fat diet and choline-deficient very high-fat diet. After being fed a very high-fat diet for 2 weeks, U8-HKO mice showed hepatic fibrosis in a significantly wider area than in the control. Fibrosis in U8-HKO mouse liver was further enhanced under a very high-fat diet depleted of choline (the liver surface was lumpy). Concomitant administration of an angiotensin 2 type 1 receptor blocker reduced the hepatic fibrosis caused by the very high-fat diet, suggesting the existence of inflammation. Carbon tetrachloride also induced hepatic fibrosis but the severity was comparable in the control and U8-HKO mice. In conjunction with our previous finding, the results indicate that although UBXD8 functionality can be largely compensated in the normal setting, it is crucial to sustain VLDL secretion when exposed to a dietary challenge of high fat. U8-HKO mice that develop fibrosis within 2 weeks of high-fat feeding can be used as a model to study NAFLD/NASH disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achiwa K, Ishigami M, Ishizu Y et al (2016) DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model. Biochem Biophys Res Commun 470:15–21

    Article  CAS  PubMed  Google Scholar 

  • Day CP, James OF (1998) Steatohepatitis: a tale of two hits? Gastroenterology 114:842–845

    Article  CAS  PubMed  Google Scholar 

  • Dubuquoy C, Robichon C, Lasnier F et al (2011) Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. J Hepatol 55:145–153

    Article  CAS  PubMed  Google Scholar 

  • Eguchi Y, Hyogo H, Ono M et al (2012) JSG-NAFLD, Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol 47:586–595

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Nozaki Y, Wada K et al (2009) Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology 50:772–780

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Ma Y, Kadegowda AK et al (2013) Deficiency of liver Comparative Gene Identification-58 causes steatohepatitis and fibrosis in mice. J Lipid Res 54(8):2109–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaguchi M, Kojima T, Takeda N et al (2005) The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143:722–728

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SH, Hirsova P, Malhi H, Gores GJ (2016) Animal models of nonalcoholic steatohepatitis: eat, delete, and inflame. Dig Dis Sci 61:1325–1336

    Article  PubMed  Google Scholar 

  • Imai N, Suzuki M, Hayashi K et al (2015) Hepatocyte-specific depletion of UBXD8 induces periportal steatosis in mice fed a high-fat diet. PLoS One 10:e0127114

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Zhang H, Meng D et al (2013) UAS domain of Ubxd8 and FAF1 polymerizes upon interaction with long-chain unsaturated fatty acids. J Lipid Res 54:2144–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlitina J, Smagris E, Stender S et al (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulinski A, Vance DE, Vance JE (2004) A choline-deficient diet in mice inhibits neither the CDP-choline pathway for phosphatidylcholine synthesis in hepatocytes nor apolipoprotein B secretion. J Biol Chem 279:23916–23924

    Article  CAS  PubMed  Google Scholar 

  • Larter CZ, Yeh MM (2008) Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol 23:1635–1648

    Article  PubMed  Google Scholar 

  • Lee JN, Kim H, Yao H et al (2010) Identification of Ubxd8 protein as a sensor for unsaturated fatty acids and regulator of triglyceride synthesis. Proc Natl Acad Sci USA. 107:21424–21429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite NC, Salles GF, Araujo ALE et al (2009) Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 29:113–119

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Vance DE (2008) Phosphatidylcholine and choline homeostasis. J Lipid Res 49:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Luo F, Ishigami M, Achiwa K et al (2015) Raloxifene ameliorates liver fibrosis of nonalcoholic steatohepatitis induced by choline-deficient high-fat diet in ovariectomized mice. Dig Dis Sci 60:2730–2739

    Article  CAS  PubMed  Google Scholar 

  • Nomura F, Ohnishi K, Koen H et al (1986) Serum cholinesterase in patients with fatty liver. J Clin Gastroenterol 8:599–602

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki Y, Cheng J, Fujita A et al (2006) Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol Biol Cell 17:2674–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsaki Y, Cheng J, Suzuki M et al (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121:2415–2422

    Article  CAS  PubMed  Google Scholar 

  • Pérez Tamayo R (1983) Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? Hepatology 3:112–120

    Article  PubMed  Google Scholar 

  • Romeo S, Kozlitina J, Xing C et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwimmer JB, Behling C, Newbury R et al (2005) Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 42(3):641–649

    Article  PubMed  Google Scholar 

  • Shirai Y, Yoshiji H, Noguchi R et al (2013) Cross talk between toll-like receptor-4 signaling and angiotensin-II in liver fibrosis development in the rat model of non-alcoholic steatohepatitis. J Gastroenterol Hepatol 28:723–730

    Article  CAS  PubMed  Google Scholar 

  • Smagris E, Gilyard S, BasuRay S et al (2016) Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem 20:10659–10676

    Article  Google Scholar 

  • Stowell RE, Lee CS, Tsuboi KK, Villasana A (1951) Histochemical and microchemical changes in experimental cirrhosis and hepatoma formation in mice by carbon tetrachloride. Cancer Res 11:345–354

    CAS  PubMed  Google Scholar 

  • Suzuki M, Otsuka T, Ohsaki Y et al (2012) Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 23:800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846

    Article  CAS  PubMed  Google Scholar 

  • Williams CD, Stengel J, Asike MI et al (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–131

    Article  PubMed  Google Scholar 

  • Wu JW, Wang SP, Alvarez F et al (2011) Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 54(1):122–132

    Article  CAS  PubMed  Google Scholar 

  • Wu FM, Jonas MM, Opotowsky AR et al (2015) Portal and centrilobular hepatic fibrosis in Fontan circulation and clinical outcomes. J Hear Lung Transplant. 34:883–891

    Article  Google Scholar 

  • Yoshiji H, Noguchi R, Ikenaka Y et al (2009) Losartan, an angiotensin-II type 1 receptor blocker, attenuates the liver fibrosis development of non-alcoholic steatohepatitis in the rat. BMC Res Notes. 2:70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Imai.

Ethics declarations

Conflict of interest

Hidemi Goto - Grant/Research Support: Eisai, Daiichi Sankyo, Otsuka, Fujifilm, Bristol-Myers, Toshiba, Mitsubishi Tanabe, Kyorin, Chugai, Kyowa Hakko Kirin, Taiho, Sumitomo Dainippon, Abbvie, MSD The following authors have nothing to disclose: Norihiro Imai, Michitaka Suzuki, Yoji Ishizu, Teiji Kuzuya, Takashi Honda, Kazuhiko Hayashi, Masatoshi Ishigami, Yoshiki Hirooka, Testuya Ishikawa, Toyoshi Fujimoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2017_1572_MOESM1_ESM.tif

Supporting Fig. S1 Liver sections obtained from control and U8-HKO mice that were fed normal chow diet (A) or a moderately high-fat diet (31 kcal%) (B) for 26 weeks. Sirius red staining. Bar, 100 μm. CV: central vein, PV: portal vein. (TIFF 6154 kb)

418_2017_1572_MOESM2_ESM.tif

Supporting Fig. S2 (A) Quantification of the Sirius red-stained area after feeding CSHF. U8-HKO male mice showed a significantly larger area than control mice (n = 4, *p < 0.05; Student’s t test). (B) Serum enzyme levels after feeding CSHF. No significant difference was observed between U8-HKO and control mice (n = 4, Student’s t test). (C) Quantification of the Sirius red-stained area after feeding CDHF. U8-HKO mice showed a significantly larger area than control mice (n = 4, * p < 0.05; Student’s t test). (D) Serum levels of ALP and ChE were significantly higher in U8-HKO mice than in control mice after feeding CDHF (n = 4, *p < 0.05; Student’s t test). (TIFF 441 kb)

418_2017_1572_MOESM3_ESM.tif

Supporting Fig. S3 Liver sections obtained from control and U8-HKO mice fed CDHF for 2 weeks (A), fed CDHF with ARB for 2 weeks (B), or treated with CCL4 for 3 weeks (C). HE staining. Bar, 100 μm. CV: central vein, PV: portal vein. (TIFF 10361 kb)

418_2017_1572_MOESM4_ESM.tif

Supporting Fig. S4 Food consumption and body weight change of mice fed CDHF for 2 weeks (n = 4). (A) Cumulative food consumption. Control and U8-HKO mice did not show a difference. (B) Change in body weight from that on day 0 is shown. Control and U8-HKO mice showed similar changes. (TIFF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imai, N., Suzuki, M., Ishizu, Y. et al. Hepatocyte-specific depletion of ubiquitin regulatory X domain containing protein 8 accelerates fibrosis in a mouse non-alcoholic steatohepatitis model. Histochem Cell Biol 148, 219–227 (2017). https://doi.org/10.1007/s00418-017-1572-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1572-6

Keywords

Navigation