Skip to main content

Advertisement

Log in

Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

With the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become a public health problem with increasing prevalence. The mechanism of disease progression remains obscure and effective therapy is lacking. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary, especially, since causative mechanistic studies of NAFLD are more difficult or unethical to perform in humans. A large number of studies regarding the pathophysiology and treatment of nonalcoholic steatohepatitis (NASH) have been undertaken in mice to model human NAFLD and NASH. This review discusses the known dietary, genetic, and inflammation-based animal models of NASH described in recent years, with a focus on the major advances made in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

MCD:

Methionine and choline deficient

CDAA:

Choline-deficient l-amino-defined

VLDL:

Very low-density lipoprotein

HFD:

High-fat diet

FF:

Fast food

HF:

High fat

FFC:

High fat, fructose, and cholesterol

HF-HSD:

High-fat high-sugar diet

SREBP-1:

Sterol regulatory element-binding protein 1

PTEN:

Phosphatase and tensin homolog

PPARα:

Peroxisome proliferator-activated receptor α

AOX:

Acyl-coenzyme A oxidase

MAT1A:

Methionine adenosyl transferase

MCP-1:

Monocyte chemotactic protein 1

CCR-2:

Chemokine (C–C motif) receptor 2

TLR:

Toll-like receptor

My88:

Myeloid cell differentiation 88

MD-2:

Myeloid differentiation protein 2

JNK:

C-jun N-terminal kinase

MLK:

Mixed lineage kinase 3

IL:

Interleukin

NLR:

NOD-like receptors

NLRP3:

NOD-, LRR-, and pyrin domain-containing 3

References

  1. Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140:124–131.

    Article  PubMed  Google Scholar 

  2. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.

    Article  CAS  PubMed  Google Scholar 

  3. Angulo P, Lindor KD. Non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2002;17:S186–190.

    Article  PubMed  Google Scholar 

  4. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42:987–1000.

    Article  CAS  PubMed  Google Scholar 

  5. Vanni E, Marengo A, Mezzabotta L, Bugianesi E. Systemic complications of nonalcoholic fatty liver disease: when the liver is not an innocent bystander. Semin Liver Dis. 2015;35:236–249.

    Article  PubMed  Google Scholar 

  6. Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology. 2008;134:1369–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology. 1990;11:74–80.

    Article  PubMed  Google Scholar 

  8. Propst A, Propst T, Judmaier G, Vogel W. Prognosis in nonalcoholic steatohepatitis. Gastroenterology. 1995;108:1607.

    Article  CAS  PubMed  Google Scholar 

  9. Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113–121.

    Article  PubMed  Google Scholar 

  10. Lackner C. Hepatocellular ballooning in nonalcoholic steatohepatitis: the pathologist’s perspective. Expert Rev Gastroenterol. 2011;5:223–231.

    Article  Google Scholar 

  11. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–2474.

    Article  CAS  PubMed  Google Scholar 

  12. Carter-Kent C, Brunt EM, Yerian LM, et al. Relations of steatosis type, grade, and zonality to histological features in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2011;52:190–197.

    Article  PubMed  Google Scholar 

  13. Schwimmer JB, Behling C, Newbury R, et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology. 2005;42:641–649.

    Article  PubMed  Google Scholar 

  14. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.

    Article  PubMed  Google Scholar 

  15. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–845.

    Article  CAS  PubMed  Google Scholar 

  16. Feldstein AE, Werneburg NW, Canbay A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology. 2004;40:185–194.

    Article  CAS  PubMed  Google Scholar 

  17. Tilg H, Diehl AM. Mechanisms of disease: cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000;343:1467–1476.

    Article  CAS  PubMed  Google Scholar 

  18. Duval C, Thissen U, Keshtkar S, et al. Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in c57bl/6 mice. Diabetes. 2010;59:3181–3191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Charlton M, Krishnan A, Viker K, et al. Fast food diet mouse: novel small animal model of nash with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2011;301:G825–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deng QG, She H, Cheng JH, et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology. 2005;42:905–914.

    Article  CAS  PubMed  Google Scholar 

  22. Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007;37:50–57.

    Article  CAS  PubMed  Google Scholar 

  23. Rinella ME, Green RM. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol. 2004;40:47–51.

    Article  CAS  PubMed  Google Scholar 

  24. Svegliati-Baroni G, Candelaresi C, Saccomanno S, et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol. 2006;169:846–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weltman MD, Farrell GC, Liddle C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology. 1996;111:1645–1653.

    Article  CAS  PubMed  Google Scholar 

  26. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol. 2008;295:G987–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shiri-Sverdlov R, Wouters K, van Gorp PJ, et al. Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. J Hepatol. 2006;44:732–741.

    Article  CAS  PubMed  Google Scholar 

  28. Kohli R, Kirby M, Xanthakos SA, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010;52:934–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verbeek J, Lannoo M, Pirinen E, et al. Roux-en-y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut. 2015;64:673–683.

    Article  CAS  PubMed  Google Scholar 

  30. Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 2004;79:502–509.

    CAS  PubMed  Google Scholar 

  31. Hewitt KN, Pratis K, Jones MEE, Simpson ER. Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse. Endocrinology. 2004;145:1842–1848.

    Article  CAS  PubMed  Google Scholar 

  32. Newberry EP, Kennedy S, Xie Y, et al. Phenotypic divergence in two lines of L-FABP −/− mice reflects substrain differences and environmental modifiers. Am J Physiol Gastrointest Liver Physiol. 2015;309:G648–661.

    Article  PubMed  Google Scholar 

  33. Yao ZM, Vance DE. Reduction in VLDL, but not HDL, in plasma of rats deficient in choline. Biochem Cell Biol. 1990;68:552–558.

    Article  CAS  PubMed  Google Scholar 

  34. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000;105:1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larter CZ, Yeh MM, Williams J, Bell-Anderson KS, Farrell GC. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J Hepatol. 2008;49:407–416.

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45:1366–1374.

    Article  CAS  PubMed  Google Scholar 

  37. Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology. 2005;129:1663–1674.

    Article  CAS  PubMed  Google Scholar 

  38. Ip E, Farrell G, Hall P, Robertson G, Leclercq I. Administration of the potent PPARalpha agonist, wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology. 2004;39:1286–1296.

    Article  CAS  PubMed  Google Scholar 

  39. Hebbard L, George J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2011;8:34–44.

    Article  CAS  Google Scholar 

  40. Nakae D, Mizumoto Y, Andoh N, et al. Comparative changes in the liver of female fischer-344 rats after short-term feeding of a semipurified or a semisynthetic l-amino acid-defined choline-deficient diet. Toxicol Pathol. 1995;23:583–590.

    Article  CAS  PubMed  Google Scholar 

  41. Kodama Y, Kisseleva T, Iwaisako K, et al. C-jun n-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology. 2009;137:1467–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zou YH, Li J, Lu C, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79:1100–1107.

    Article  CAS  PubMed  Google Scholar 

  43. Wouters K, van Gorp PJ, Bieghs V, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology. 2008;48:474–486.

    Article  PubMed  Google Scholar 

  44. Vergnes L, Phan J, Strauss M, Tafuri S, Reue K. Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J Biol Chem. 2003;278:42774–42784.

    Article  CAS  PubMed  Google Scholar 

  45. Matsuzawa N, Takamura T, Kurita S, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology. 2007;46:1392–1403.

    Article  CAS  PubMed  Google Scholar 

  46. Ichimura M, Kawase M, Masuzumi M, et al. High-fat and high-cholesterol diet rapidly induces non-alcoholic steatohepatitis with advanced fibrosis in Sprague–Dawley rats. Hepatol Res. 2015;45:458–469.

    Article  CAS  PubMed  Google Scholar 

  47. Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1961–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ouyang X, Cirillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48:993–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee L, Alloosh M, Saxena R, et al. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology. 2009;50:56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alisi A, Manco M, Pezzullo M, Nobili V. Fructose at the center of necroinflammation and fibrosis in nonalcoholic steatohepatitis. Hepatology. 2011;53:372–373.

    Article  PubMed  Google Scholar 

  51. du Plessis J, van Pelt J, Korf H, et al. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology. 2015;149:635–648 e614.

    Article  PubMed  Google Scholar 

  52. Idrissova L, Malhi H, Werneburg NW, et al. Trail receptor deletion in mice suppresses the inflammation of nutrient excess. J Hepatol. 2015;62:1156–1163.

    Article  CAS  PubMed  Google Scholar 

  53. Mayer J, Bates MW, Dickie MM. Hereditary diabetes in genetically obese mice. Science. 1951;113:746–747.

    Article  CAS  PubMed  Google Scholar 

  54. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA. 1997;94:2557–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brix AE, Elgavish A, Nagy TR, Gower BA, Rhead WJ, Wood PA. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Mol Genet Metab. 2002;75:219–226.

    Article  CAS  PubMed  Google Scholar 

  56. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol. 2002;37:206–213.

    Article  CAS  PubMed  Google Scholar 

  57. Chitturi S, Farrell G, Frost L, et al. Serum leptin in nash correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002;36:403–409.

    Article  CAS  PubMed  Google Scholar 

  58. Uygun A, Kadayifci A, Yesilova Z, et al. Serum leptin levels in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2000;95:3584–3589.

    Article  CAS  PubMed  Google Scholar 

  59. Chalasani N, Crabb DW, Cummings OW, et al. Does leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis? Am J Gastroenterol. 2003;98:2771–2776.

    Article  CAS  PubMed  Google Scholar 

  60. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–1128.

    Article  CAS  PubMed  Google Scholar 

  61. Sahai A, Malladi P, Pan X, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1035–1043.

    Article  CAS  PubMed  Google Scholar 

  62. Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998;12:3182–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakayama H, Otabe S, Ueno T, et al. Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism. 2007;56:470–475.

    Article  CAS  PubMed  Google Scholar 

  64. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature. 1997;385:165–168.

    Article  CAS  PubMed  Google Scholar 

  65. Okumura K, Ikejima K, Kon K, et al. Exacerbation of dietary steatohepatitis and fibrosis in obese, diabetic kk-a(y) mice. Hepatol Res. 2006;36:217–228.

    Article  CAS  PubMed  Google Scholar 

  66. Stiles B, Wang Y, Stahl A, et al. Liver-specific deletion of negative regulator PTEN results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA. 2004;101:2082–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Horie Y, Suzuki A, Kataoka E, et al. Hepatocyte-specific PTEN deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Investig. 2004;113:1774–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Investig. 1999;103:1489–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (pparalpha) in the cellular fasting response: The pparalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA. 1999;96:7473–7478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kroetz DL, Yook P, Costet P, Bianchi P, Pineau T. Peroxisome proliferator-activated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J Biol Chem. 1998;273:31581–31589.

    Article  CAS  PubMed  Google Scholar 

  71. Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem. 1998;273:29577–29585.

    Article  CAS  PubMed  Google Scholar 

  72. Fan CY, Pan J, Chu R, et al. Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem. 1996;271:24698–24710.

    Article  CAS  PubMed  Google Scholar 

  73. Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-coa oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem. 1998;273:15639–15645.

    Article  CAS  PubMed  Google Scholar 

  74. Martinez-Chantar ML, Corrales FJ, Martinez-Cruz LA, et al. Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. Faseb J. 2002;16:1292–1294.

    CAS  PubMed  Google Scholar 

  75. Lu SC, Alvarez L, Huang ZZ, et al. Methionine adenosyltransferase 1a knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA. 2001;98:5560–5565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol. 2009;51:371–379.

    Article  CAS  PubMed  Google Scholar 

  77. Brunt EM, Kleiner DE, Wilson LA, et al. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD-clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology. 2009;49:809–820.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Morinaga H, Mayoral R, Heinrichsdorff J, et al. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes. 2015;64:1120–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science. 2012;336:86–90.

    Article  CAS  PubMed  Google Scholar 

  80. Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–551.

    Article  PubMed  Google Scholar 

  81. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1310–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ye D, Li FY, Lam KS, et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of x-box binding protein-1 in mice. Gut. 2012;61:1058–1067.

    Article  CAS  PubMed  Google Scholar 

  83. Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2011;300:G433–441.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hosoi T, Yokoyama S, Matsuo S, Akira S, Ozawa K. Myeloid differentiation factor 88 (MyD88)-deficiency increases risk of diabetes in mice. PLoS One 2010;5:e12537.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jia L, Vianna CR, Fukuda M, et al. Hepatocyte toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun. 2014;5:3878.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Solinas G, Vilcu C, Neels JG, et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell metabolism. 2007;6:386–397.

    Article  CAS  PubMed  Google Scholar 

  87. Han MS, Jung DY, Morel C, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science. 2013;339:218–222.

    Article  CAS  PubMed  Google Scholar 

  88. Ibrahim SH, Gores GJ, Hirsova P, et al. Mixed lineage kinase 3 deficient mice are protected against the high fat high carbohydrate diet-induced steatohepatitis. Liver Int. 2014;34:427–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411.

    Article  CAS  PubMed  Google Scholar 

  90. Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wree A, McGeough MD, Pena CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med. 2014;92:1069–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Courtney Hoover for her excellent secretarial assistance, Dr. Thomas Smyrk, and Dr. Kyoko Tomita for their help in acquiring the histological pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Gores.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.H., Hirsova, P., Malhi, H. et al. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Dig Dis Sci 61, 1325–1336 (2016). https://doi.org/10.1007/s10620-015-3977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3977-1

Keywords

Navigation