Skip to main content
Log in

Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D−/− mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D−/− mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D−/− mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D−/− than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D−/− mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akiyama J, Hoffman A, Brown C, Allen L, Edmondson J, Poulain F, Hawgood S (2002) Tissue distribution of surfactant proteins A and D in the mouse. J Histochem Cytochem 50:993–996

    Article  CAS  PubMed  Google Scholar 

  • Almeida C, Nagarajan D, Tian J, Leal SW, Wheeler K, Munley M, Blackstock W, Zhao W (2013) The role of alveolar epithelium in radiation-induced lung injury. PLoS ONE 8:e53628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atochina EN, Beers MF, Hawgood S, Poulain F, Davis C, Fusaro T, Gow AJ (2004) Surfactant protein-D, a mediator of innate lung immunity, alters the products of nitric oxide metabolism. Am J Repir Cell Mol Biol 30:271–279

    Article  CAS  Google Scholar 

  • Ballinger MN, Hubbard LLN, McMillan TR, Toews GB, Peters-Golden M, Paine R III, Moore BB (2008) Paradoxical role of alveolar macrophage-derived granulocyte macrophage colony-stimulating factor in pulmonary host defense post-bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol 295:L114–L122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard ME, Kim H, Rajagopalan MS, Stone B, Salimi U, Rwigema JC, Epperly MW, Shen H, Goff JP, Franicola D, Dixon T, Cao S, Zhang X, Wang H, Stolz DB, Greenberger JS (2012) Repopulation of the irradiation damaged lung with bone marrow-derived cells. In vivo 26:9–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birkelbach B, Lutz D, Ruppert C, Henneke I, Lopez-Rodriguez E, Günther A, Ochs M, Mahavadi P, Knudsen L (2015) Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. Am J Physiol Lung Cell Mol Physiol 309:L63–L75

    Article  CAS  PubMed  Google Scholar 

  • Botas C, Poulain F, Akiyama J, Brown C, Allen L, Goerke J, Clements J, Carlson E, Gillespie AM, Epstein C, Hawgood S (1998) Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci USA 95:11869–11874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhardt A, Cottier H (1989) Cellular events in alveolitis and the evolution of pulmonary fibrosis. Virchows Arch B Cell Pathol Incl Mol Pathol 58:1–13

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Summer R, Sun X, Fitzsimmons K, Fine A (2005) Evidence that bone marrow cells do not contribute to the alveolar epithelium. Am J Respir Cell Mol Biol 33:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke KR, Nishinakamura R, Martin TR, Kobzik L, Brewer J, Whitsett JA, Bungard D, Murray R, Ferrara JLM (1997) Persistence of pulmonary pathology and abnormal lung function in Il-3/GM-CSF/Il-5 βc receptor-deficient mice despite correction of alveolar proteinosis after BMT. Bone Marrow Transplant 20:657–662

    Article  CAS  PubMed  Google Scholar 

  • Crouch E, Wright JR (2001) Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63:521–554

    Article  CAS  PubMed  Google Scholar 

  • de Saint-Georges L, Van Gorp U, Maisin JR (1988) Response of mouse lung air-blood barrier to X-irradiation: ultrastructural and stereological analysis. Scanning Microsc 2:537–543

    PubMed  Google Scholar 

  • Down JD, Yanch JC (2010) Identifying the high radiosensitivity of the lungs of C57L mice in a model of total-body irradiation and bone marrow transplantation. Radiat Res 174:258–263

    Article  CAS  PubMed  Google Scholar 

  • Fedorocko P, Egyed A, Vacek A (2002) Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung. Int J Radiat Biol 78:305–313

    Article  CAS  PubMed  Google Scholar 

  • Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehrenbach H, Ochs M (1998) Studying lung ultrastructure. In: Uhlig S, Taylor AE (eds) Methods in pulmonary research. Birkhäuser, Basel, pp 429–454

    Chapter  Google Scholar 

  • Franko AJ, Nguyen GK, Sharplin J, Vriend R (1996) A comparison of the ultrastructure of perfusion-deficient and functional lung parenchyma in CBA mice during the late phase after irradiation. Radiat Res 146:586–589

    Article  CAS  PubMed  Google Scholar 

  • Giaid A, Lehnert SM, Chehayeb B, Chehayeb D, Kaplan I, Shenouda G (2003) Inducible nitric oxide synthase and nitrotyrosine in mice with radiation-induced lung damage. Am J Clin Oncol 26:e67–e72

    PubMed  Google Scholar 

  • Gram K, Yang S, Steiner M, Somani A, Hawgood S, Blazar BR, Panoskaltsis-Mortari A, Haddad IY (2009) Simultaneous absence of surfactant proteins A and D increases lung inflammation and injury after allogeneic HSCT in mice. Am J Physiol Lung Cell Mol Physiol 296:L167–L175

    Article  CAS  PubMed  Google Scholar 

  • Gross NJ (1977) Pulmonary effects of radiation therapy. Ann Intern Med 86:81–92

    Article  CAS  PubMed  Google Scholar 

  • Hawgood S, Poulain FR (2001) The pulmonary collectins and surfactant metabolism. Annu Rev Physiol 63:495–519

    Article  CAS  PubMed  Google Scholar 

  • Herzog EL, Van Arnam J, Hu B, Krause DS (2006) Threshold of lung injury required for the appearance of bone-marrow-derived lung epithelia. Stem Cells 24:1986–1992

    Article  PubMed  Google Scholar 

  • Hubbard LL, Ballinger MN, Wilke CA, Moore BB (2008) Comparison of conditioning regimens for alveolar macrophage reconstitution and innate immune function post bone marrow transplant. Exp Lung Res 34:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami M, Whitsett JA, Jobe A, Ross G, Fisher J, Korfhagen T (2000) Surfactant metabolism in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol 279:L468–L476

    CAS  PubMed  Google Scholar 

  • Ikegami M, Na C-L, Korfhagen TR, Whitsett JA (2005) Surfactant protein D influences surfactant ultrastructure and uptake by alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 188:L552–L561

    Article  Google Scholar 

  • Jackson IL, Vujaskovic Z, Down JD (2010) Revisiting strain-related differences in radiation sensitivity of the mouse lung: recognizing and avoiding the confounding effects of pleural effusions. Radiat Res 173:10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson IL, Xu P, Hadley C, Katz BP, McGurk R, Down JD, Vujaskovic Z (2012) A preclinical rodent model of radiation-induced lung injury for medical countermeasure screening in accordance with the FDA animal rule. Health Phys 103:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung A, Allen L, Nyengaard JR, Gundersen HJG, Richter J, Hawgood S, Ochs M (2005) Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice. Anat Rec 286A:885–890

    Article  CAS  Google Scholar 

  • Keane TJ, Van Dyk J, Rider WD (1981) Idiopathic interstitial pneumonia following bone marrow transplantation: the relationship with total body irradiation. Int J Radiat Oncol Biol Phys 7:1365–1370

    Article  CAS  PubMed  Google Scholar 

  • Knudsen L, Ochs M, Mackay R, Townsend P, Deb R, Mühlfeld C, Richter J, Gilbert F, Hawgood S, Reid K, Clark H (2007) Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice. Respir Res 8:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Knudsen L, Atochina-Vasserman EN, Guo CJ, Scott PA, Haenni B, Beers MF, Ochs M, Gow AJ (2014) NOS2 is critical to the development of emphysema in Sftpd deficient mice but does not affect surfactant homeostasis. PLoS ONE 9:e85722

    Article  PubMed  PubMed Central  Google Scholar 

  • Korfhagen TR, Sheftelyevich V, Burhans MS, Bruno MD, Ross GF, Wert SE, Stahlman MT, Jobe AH, Ikegami M, Whitsett JA, Fisher JH (1998) Surfactant protein-D regulates surfactant phospholipids homeostasis in vitro. J Biol Chem 273:28438–28443

    Article  CAS  PubMed  Google Scholar 

  • Lund MB, Brinch L, Kongerud J, Boe J (2004) Lung function 5 yrs after allogeneic bone marrow transplantation conditioned with busulphan and cyclophosphamide. Eur Respir J 23:901–905

    Article  CAS  PubMed  Google Scholar 

  • Lutz D, Gazdhar A, Lopez-Rodriguez E, Ruppert C, Mahavadi P, Günther A, Klepetko W, Bates JH, Smith B, Geiser T, Ochs M, Knudsen L (2015) Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am J Respir Cell Mol Biol 52:232–243

    Article  PubMed  Google Scholar 

  • Madan T, Kishore U, Singh M, Strong P, Clark H, Hussain EM, Reid KBM, Sarma PU (2001) Surfactant proteins A and D protect mice against pulmonary hypersensitivity induced by Aspergillus fumigatus antigens and allergens. J Clin Invest 107:467–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen J, Kliem A, Tornoe I, Skjodt K, Koch C, Holmskov U (2000) Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol 164:5866–5870

    Article  CAS  PubMed  Google Scholar 

  • Malaviya R, Gow AJ, Francis M, Abramova EV, Laskin JD, Laskin DL (2015) Radiation-induced lung injury and inflammation in mice: role of inducible nitric oxide synthase and surfactant protein D. Toxicol Sci 144:27–28

    Article  CAS  PubMed  Google Scholar 

  • Miller BE, Hook GE (1990) Hypertrophy and hyperplasia of alveolar type II cells in response to silica and other pulmonary toxicants. Environ Health Perspect 85:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlfeld C, Ochs M (2013) Quantitative microscopy of the lung—a problem-based approach. Part 2: stereological parameters and study designs in various diseases of the respiratory tract. Am J Physiol Lung Cell Mol Physiol 305:L205–L221

    Article  PubMed  Google Scholar 

  • Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Gehr P, Ochs M (2007) Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Mühlfeld C, Knudsen L, Ochs M (2013) Stereology and morphometry of lung tissue. Methods Mol Biol 931:367–390

    Article  PubMed  Google Scholar 

  • Nishinakamura R, Wiler R, Dirksen U, Morikawa Y, Arai K, Miyajima A, Burdach S, Murray R (1996) The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 βc receptor-deficient mice is reversed by bone marrow transplantation. J Exp Med 183:2657–2662

    Article  CAS  PubMed  Google Scholar 

  • Ochs M (2006) A brief update on lung stereology. J Microsc 222:188–200

    Article  PubMed  Google Scholar 

  • Ochs M (2010) The closer we look the more we see? Quantitative microscopic analysis of the pulmonary surfactant system. Cell Physiol Biochem 25:27–40

    Article  CAS  PubMed  Google Scholar 

  • Ochs M, Mühlfeld C (2013) Quantitative microscopy of the lung—a problem-based approach. Part 1: basic principles of stereology. Am J Physiol Lung Cell Mol Physiol 305:L15–L22

    Article  CAS  PubMed  Google Scholar 

  • Ochs M, Knudsen L, Allen L, Stumbaugh A, Levitt S, Nyengaard JR, Hawgood S (2004a) GM-CSF mediates alveolar epithelial type II cell changes, but not emphysema-like pathology, in SP-D-deficient mice. Am J Physiol Lung Cell Mol Physiol 287:L1333–L1341

    Article  CAS  PubMed  Google Scholar 

  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJG (2004b) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Article  PubMed  Google Scholar 

  • Penney DP, Rubin P (1977) Specific early fine structural changes in the lung following irradiation. Int J Radiat Oncol Biol Phys 2:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Penney DP, Siemann DW, Rubin P, Shapiro DL, Finkelstein J, Cooper RA Jr (1982) Morphologic changes reflecting early and late effects of irradiation of the distal lung of the mouse: a review. Scan Electron Microsc Pt. 1:413–425

    Google Scholar 

  • Reed JA, Whitsett JA (1998) Granulocyte-macrophage colony-stimulating factor and pulmonary surfactant homeostasis. Proc Assoc Am Physicians 110:321–332

    CAS  PubMed  Google Scholar 

  • Rubin P, Siemann DW, Shapiro DL, Finkelstein JN, Penney DP (1983) Surfactant release as an early measure of radiation pneumonitis. Int J Radiat Oncol Biol Phys 9:1669–1673

    Article  CAS  PubMed  Google Scholar 

  • Sampath S, Schultheiss TE, Wong J (2005) Dose response and factors related to interstitial pneumonitis after bone marrow transplant. Int J Radiat Oncol Biol Phys 63:876–884

    Article  PubMed  Google Scholar 

  • Scherle W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26:57–60

    CAS  PubMed  Google Scholar 

  • Schneider JP, Ochs M (2014) Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods. Am J Physiol Lung Cell Mol Physiol 306:L341–L350

    Article  CAS  PubMed  Google Scholar 

  • Shapiro DL, Finkelstein JN, Rubin P, Penney DP, Siemann DW (1984) Radiation induced secretion of surfactant from cell cultures of type II pneumocytes: an in vitro model of radiation toxicity. Int J Radiat Oncol Biol Phys 10:375–378

    Article  CAS  PubMed  Google Scholar 

  • Stahlman MT, Gray ME, Hull WM, Whitsett JA (2002) Immunolocalization of surfactant protein-D (SP-D) in human fetal, newborn, and adult tissues. J Histochem Cytochem 50:651–660

    Article  CAS  PubMed  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    Article  CAS  PubMed  Google Scholar 

  • Theise ND, Henegariu O, Grove J, Jagirdar J, Kao PN, Crawford JM, Badve S, Saxena R, Krause DS (2002) Radiation pneumonitis in mice: a severe injury model for pneumocyte engraftment from bone marrow. Exp Hematol 30:1333–1338

    Article  PubMed  Google Scholar 

  • Vedel-Jensen EB, Gundersen HJG (1993) The rotator. J Microsc 170:35–44

    Article  Google Scholar 

  • Ward HE, Kemsley L, Davies L, Holecek M, Berend N (1993) The pulmonary response to sublethal thoracic irradiation in the rat. Radiat Res 136:15–21

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER (1979) Stereological methods, vol 1., Practical methods for biological morphometryAcademic Press, London

    Google Scholar 

  • Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci USA 97:5972–5977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitsett JA (2005) Surfactant proteins in innate host defense of the lung. Biol Neonate 88:175–180

    Article  CAS  PubMed  Google Scholar 

  • Willführ A, Brandenberger C, Piatkowski T, Grothausmann R, Nyengaard JR, Ochs M, Mühlfeld C (2015) Estimation of the number of alveolar capillaries by the Euler number (Euler-Poincaré characteristic). Am J Physiol Lung Cell Mol Physiol 309:L1286–L1293

    PubMed  Google Scholar 

  • Willner J, Vordermark D, Schmidt M, Gassel A, Flentje M, Wirtz H (2003) Secretory activity and cell cycle alteration of alveolar type II cells on the early and late phase after irradiation. Int J Radiat Oncol Biol Phys 55:617–625

    Article  PubMed  Google Scholar 

  • Yue H, Hu K, Liu W, Jiang J, Chen Y, Wang R (2015) Role of matrix metalloproteinases in radiation-induced lung injury in alveolar epithelial cells of Bama minipigs. Exp Therapeut Med 10:1437–1444

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Olaf Bahlmann, Susanne Fassbender, Jan Hegermann, Susanne Kuhlmann and Christa Lichtenberg for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Clark.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Christian Mühlfeld and Jens Madsen have contributed equally and share first authorship.

Matthias Ochs and Howard Clark have contributed equally and share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mühlfeld, C., Madsen, J., Mackay, RM. et al. Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice. Histochem Cell Biol 147, 49–61 (2017). https://doi.org/10.1007/s00418-016-1479-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1479-7

Keywords

Navigation