Advertisement

Histochemistry and Cell Biology

, Volume 143, Issue 4, pp 397–410 | Cite as

Vascular and neural stem cells in the gut: do they need each other?

  • Sandra Schrenk
  • Anne Schuster
  • Markus Klotz
  • Franziska Schleser
  • Jonathan Lake
  • Robert O. Heuckeroth
  • Yoo-Jin Kim
  • Matthias W. Laschke
  • Michael D. Menger
  • Karl-Herbert SchäferEmail author
Original Paper

Abstract

Enteric neurons and blood vessels form intricate networks throughout the gastrointestinal tract. To support the hypothesis of a possible interaction of both networks, we investigated whether primary mesenteric vascular cells (MVCs) and enteric nervous system (ENS)-derived cells (ENSc) depend on each other using two- and three-dimensional in vitro assays. In a confrontation assay, both cell types migrated in a target-oriented manner towards each other. The migration of MVCs was significantly increased when cultured in ENSc-conditioned medium. Co-cultures of ENSc with MVCs resulted in an improved ENSc proliferation and differentiation. Moreover, we analysed the formation of the vascular and nervous system in developing mice guts. It was found that the patterning of newly formed microvessels and neural stem cells, as confirmed by nestin and SOX2 stainings, is highly correlated in all parts of the developing gut. In particular in the distal colon, nestin/SOX2-positive cells were found in the tissues adjacent to the capillaries and in the capillaries themselves. Finally, in order to provide evidences for a mutual interaction between endothelial and neural cells, the vascular patterns of a RET(−/−) knockout mouse model as well as human Hirschsprung’s cases were analysed. In the distal colon of postnatal RET(−/−) knockout mice, the vascular and neural networks were similarly disrupted. In aganglionic zones of Hirschsprung’s patients, the microvascular density was significantly increased compared with the ganglionic zone within the submucosa. Taken together, these findings indicate a strong interaction between the enteric nervous and vascular system.

Keywords

Enteric nervous system Mesenteric vascular cells Hirschsprung’s disease RET(−/−) knockout Neurovascular interaction 

Notes

Acknowledgments

Many thanks to Tanja Schwab for her support with cell cultures, Dr. Claudia Scheuer from the Institute of Clinical and Experimental Surgery, University of Saarland, for assistance with migration assays, Dr. Yvonne Schwarz from the group of Prof. Dr. Dieter Bruns, University clinic Homburg, for the help with confocal microscopy and Dr. Cornelia Hagl for proof reading the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amiel J, Attie T, Jan D, Pelet A, Edery P, Bidaud C, Lacombe D, Tam P, Simeoni J, Flori E, Nihoul-Fekete C, Munnich A, Lyonnet S (1996) Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 5(3):355–357CrossRefPubMedGoogle Scholar
  2. Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors: implications for neural development. Curr Opin Neurobiol 10(1):103–110CrossRefPubMedGoogle Scholar
  3. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79(7):1277–1285CrossRefPubMedGoogle Scholar
  4. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. doi: 10.1038/nm0603-653 CrossRefPubMedGoogle Scholar
  5. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200. doi: 10.1038/nature03875 CrossRefPubMedGoogle Scholar
  6. Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A (2002) Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet 32(2):237–244. doi: 10.1038/ng998 CrossRefPubMedGoogle Scholar
  7. Ceyhan GO, Demir IE, Altintas B, Rauch U, Thiel G, Müller MW, Giese NA, Friess H, Schäfer K-H (2008) Neural invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. Biochem Biophys Res Commun 374(3):442–447. doi: 10.1016/j.bbrc.2008.07.035 CrossRefPubMedGoogle Scholar
  8. Delalande JM, Natarajan D, Vernay B, Finlay M, Ruhrberg C, Thapar N, Burns AJ (2013) Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol. doi: 10.1016/j.ydbio.2013.11.007 PubMedGoogle Scholar
  9. Eichmann A, Le Noble F, Autiero M, Carmeliet P (2005a) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15(1):108–115. doi: 10.1016/j.conb.2005.01.008 CrossRefPubMedGoogle Scholar
  10. Eichmann A, Makinen T, Alitalo K (2005b) Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev 19(9):1013–1021. doi: 10.1101/gad.1305405 CrossRefPubMedGoogle Scholar
  11. Feichter S, Meier-Ruge WA, Bruder E (2009) The histopathology of gastrointestinal motility disorders in children. Semin Pediatr Surg 18(4):206–211. doi: 10.1053/j.sempedsurg.2009.07.002 CrossRefPubMedGoogle Scholar
  12. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi: 10.1038/nm0603-669 CrossRefPubMedGoogle Scholar
  13. Fu YY, Peng SJ, Lin HY, Pasricha PJ, Tang SC (2013) 3-D imaging and illustration of mouse intestinal neurovascular complex. Am J Physiol Gastrointest Liver Physiol 304(1):G1–11. doi: 10.1152/ajpgi.00209.2012 CrossRefPubMedGoogle Scholar
  14. Gama Sosa MA, De Gasperi R, Rocher AB, Perez GM, Simons K, Cruz DE, Hof PR, Elder GA (2007) Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact. Cell Res 17(7):619–626. doi: 10.1038/cr.2007.53 CrossRefPubMedGoogle Scholar
  15. Hatch J, Mukouyama YS (2014) Spatiotemporal mapping of vascularization and innervation in the fetal murine intestine. Dev Dyn. doi: 10.1002/dvdy.24178 PubMedGoogle Scholar
  16. Hattermann K, Held-Feindt J, Mentlein R (2011) Spheroid confrontation assay: a simple method to monitor the three-dimensional migration of different cell types in vitro. Ann Anat 193(3):181–184. doi: 10.1016/j.aanat.2010.12.005 CrossRefPubMedGoogle Scholar
  17. Hinck L (2004) The versatile roles of “axon guidance” cues in tissue morphogenesis. Dev Cell 7(6):783–793. doi: 10.1016/j.devcel.2004.11.002 CrossRefPubMedGoogle Scholar
  18. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79(7):1267–1276CrossRefPubMedGoogle Scholar
  19. Huang SP, Wu MS, Shun CT, Wang HP, Lin MT, Kuo ML, Lin JT (2004) Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J Biomed Sci 11(4):517–527. doi: 10.1159/000077902 CrossRefPubMedGoogle Scholar
  20. Kapur RP (2000) Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol 227(1):146–155. doi: 10.1006/dbio.2000.9886 CrossRefPubMedGoogle Scholar
  21. Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A (2009) Guidance of vascular development: lessons from the nervous system. Circ Res 104(4):428–441. doi: 10.1161/CIRCRESAHA.108.188144104/4/428 CrossRefPubMedGoogle Scholar
  22. Laschke MW, Vorsterman van Oijen AE, Scheuer C, Menger MD (2011) In vitro and in vivo evaluation of the anti-angiogenic actions of 4-hydroxybenzyl alcohol. Br J Pharmacol 163(4):835–844. doi: 10.1111/j.1476-5381.2011.01292.x CrossRefPubMedCentralPubMedGoogle Scholar
  23. Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30(1):31–48PubMedGoogle Scholar
  24. Lee HJ, Choi CW, Kim EK, Kim HS, Kim BI, Choi JH (2012) Granulocyte colony-stimulating factor reduces hyperoxia-induced alveolarization inhibition by increasing angiogenic factors. Neonatology 101(4):278–284. doi: 10.1159/000335285 CrossRefPubMedGoogle Scholar
  25. Lintz M, Booz KH, Schäfer KH (1999) Combined effect of various neurotrophic factors upon dissociated rat myenteric plexus in vitro. Neurosci Res Commun 25(2):89–96. doi: 10.1002/(SICI)1520-6769(199909/10)25:2<89:AID-NRC4>3.0.CO;2-I CrossRefGoogle Scholar
  26. Lüscher TF, Barton M (2000) Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation 102(19):2434–2440. doi: 10.1161/01.CIR.102.19.2434 CrossRefPubMedGoogle Scholar
  27. McKeown SJ, Stamp L, Hao MM, Young HM (2013) Hirschsprung disease: a developmental disorder of the enteric nervous system. Wiley Interdiscip Rev Dev Biol 2(1):113–129. doi: 10.1002/wdev.57 CrossRefPubMedGoogle Scholar
  28. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109(6):693–705CrossRefPubMedGoogle Scholar
  29. Nagy N, Mwizerwa O, Yaniv K, Carmel L, Pieretti-Vanmarcke R, Weinstein BM, Goldstein AM (2009) Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling. Dev Biol 330(2):263–272. doi: 10.1016/j.ydbio.2009.03.025 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN, Sun B (2000) Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470(2):113–117CrossRefPubMedGoogle Scholar
  31. Nishiyama C, Uesaka T, Manabe T, Yonekura Y, Nagasawa T, Newgreen DF, Young HM, Enomoto H (2012) Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci 15(9):1211–1218. doi: 10.1038/nn.3184 CrossRefPubMedGoogle Scholar
  32. Rosenstein JM, Krum JM, Ruhrberg C (2010) VEGF in the nervous system. Organogenesis 6(2):107–114. doi: 10.4161/org.6.2.11687 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Schäfer KH, Saffrey MJ, Burnstock G, Mestres-Ventura P (1997) A new method for the isolation of myenteric plexus from the newborn rat gastrointestinal tract. Brain Res Brain Res Protoc 1(2):109–113CrossRefPubMedGoogle Scholar
  34. Schäfer KH, Hagl CI, Rauch U (2003) Differentiation of neurospheres from the enteric nervous system. Pediatr Surg Int 19(5):340–344. doi: 10.1007/s00383-003-1007-4 CrossRefPubMedGoogle Scholar
  35. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367(6461):380–383. doi: 10.1038/367380a0 CrossRefPubMedGoogle Scholar
  36. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, Martin M, Nguyen TD, Nguyen TN, Gries M, Fassbender K, Conconi MT, Parnigotto PP, Schafer KH (2014a) Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med 18(7):1429–1443. doi: 10.1111/jcmm.12292 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Schuster A, Klotz M, Schwab T, Lilischkis R, Schneider A, Schäfer KH (2014b) Granulocyte-colony stimulating factor: a new player for the enteric nervous system. Cell Tissue Res 355(1):35–48. doi: 10.1007/s00441-013-1744-1 CrossRefPubMedGoogle Scholar
  38. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304(5675):1338–1340. doi: 10.1126/science.1095505505 CrossRefPubMedGoogle Scholar
  39. Snead M, Papapetropoulos A, Carrier G, Catravas J (1995) Isolation and culture of endothelial cells from the mesenteric vascular bed. Methods Cell Sci 17(4):257–262. doi: 10.1007/bf00986231 CrossRefGoogle Scholar
  40. Tam PK, Boyd GP (1990) Origin, course, and endings of abnormal enteric nerve fibres in Hirschsprung’s disease defined by whole-mount immunohistochemistry. J Pediatr Surg 25(4):457–461CrossRefPubMedGoogle Scholar
  41. Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36(2):169–180. doi: 10.1007/BF00666038 CrossRefPubMedGoogle Scholar
  42. Weinstein BM (2005) Vessels and nerves: marching to the same tune. Cell 120(3):299–302. doi: 10.1016/j.cell.2005.01.010 CrossRefPubMedGoogle Scholar
  43. Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. NeuroReport 11(9):1991–1996. doi: 10.1097/00001756-200006260-00037 CrossRefPubMedGoogle Scholar
  44. Yu JC, Davenport AP (1995) Secretion of endothelin-1 and endothelin-3 by human cultured vascular smooth muscle cells. Br J Pharmacol 114(2):551–557. doi: 10.1111/j.1476-5381.1995.tb13262.x CrossRefPubMedCentralPubMedGoogle Scholar
  45. Yuhas JM, Li AP, Martinez AO, Ladman AJ (1977) A simplified method for production and growth of multicellular tumor spheroids. Cancer Res 37(10):3639–3643PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sandra Schrenk
    • 1
  • Anne Schuster
    • 1
  • Markus Klotz
    • 1
  • Franziska Schleser
    • 1
  • Jonathan Lake
    • 2
  • Robert O. Heuckeroth
    • 3
  • Yoo-Jin Kim
    • 4
  • Matthias W. Laschke
    • 5
  • Michael D. Menger
    • 5
  • Karl-Herbert Schäfer
    • 1
    • 6
    Email author
  1. 1.Department of Computer Sciences and Microsystem TechnologyUniversity of Applied Sciences KaiserslauternZweibrückenGermany
  2. 2.Department of Pediatrics and Developmental BiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Abramson Research CenterThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Institute for PathologyUniversity of SaarlandHomburg/SaarGermany
  5. 5.Institute for Clinical and Experimental SurgeryUniversity of SaarlandHomburg/SaarGermany
  6. 6.Clinic of Pediatric SurgeryMedical Faculty Mannheim, University of HeidelbergMannheimGermany

Personalised recommendations