Skip to main content
Log in

Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Hyaluronan synthases (HAS) are unique plasma membrane glycosyltransferases secreting this glycosaminoglycan directly to the extracellular space. The three HAS isoenzymes (HAS1, HAS2, and HAS3) expressed in mammalian cells differ in their enzymatic properties and regulation by external stimuli, but clearly distinct functions have not been established. To overview the expression of different HAS isoenzymes during embryonic development and their subcellular localization, we immunostained mouse embryonic samples and cultured cells with HAS antibodies, correlating their distribution to hyaluronan staining. Their subcellular localization was further studied by GFP–HAS fusion proteins. Intense hyaluronan staining was observed throughout the development in the tissues of mesodermal origin, like heart and cartilages, but also for example during the maturation of kidneys and stratified epithelia. In general, staining for one or several HASs correlated with hyaluronan staining. The staining of HAS2 was most widespread, both spatially and temporally, correlating with hyaluronan staining especially in early mesenchymal tissues and heart. While epithelial cells were mostly negative for HASs, stratified epithelia became HAS positive during differentiation. All HAS isoenzymes showed cytoplasmic immunoreactivity, both in tissue sections and cultured cells, while plasma membrane staining was also detected, often in cellular extensions. HAS1 had brightest signal in Golgi, HAS3 in Golgi and microvillous protrusions, whereas most of the endogenous HAS2 immunoreactivity was localized in the ER. This differential pattern was also observed with transfected GFP–HASs. The large proportion of intracellular HASs suggests that HAS forms a reserve that is transported to the plasma membrane for rapid activation of hyaluronan synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bansal MK, Mason RM (1986) Evidence for rapid metabolic turnover of hyaluronate synthetase in Swarm rat chondrosarcoma chondrocytes. Biochem J 236:515–519

    CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  • Brinck J, Heldin P (1999) Expression of recombinant hyaluronan synthase (HAS) isoforms in CHO cells reduces cell migration and cell surface CD44. Exp Cell Res 252:342–351

    Article  CAS  PubMed  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8:850–855

    CAS  PubMed  Google Scholar 

  • Ghosh A, Kuppusamy H, Pilarski LM (2009) Aberrant splice variants of HAS1 (Hyaluronan Synthase 1) multimerize with and modulate normally spliced HAS1 protein: a potential mechanism promoting human cancer. J Biol Chem 284:18840–18850

    Article  CAS  PubMed  Google Scholar 

  • Goentzel BJ, Weigel PH, Steinberg RA (2006) Recombinant human hyaluronan synthase 3 is phosphorylated in mammalian cells. Biochem J 396:347–354

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen EL, Anttila M, Kultti A, Ropponen K, Penttinen J, Yliskoski M, Kuronen AT, Juhola M, Tammi R, Tammi M, Kosma VM (2002) Elevated hyaluronan concentration without hyaluronidase activation in malignant epithelial ovarian tumors. Cancer Res 62:6410–6413

    CAS  PubMed  Google Scholar 

  • Itano N, Sawai T, Miyaishi O, Kimata K (1999a) Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res 59:2499–2504

    CAS  PubMed  Google Scholar 

  • Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K (1999b) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092

    Article  CAS  PubMed  Google Scholar 

  • Jacobson A, Brinck J, Briskin MJ, Spicer AP, Heldin P (2000) Expression of human hyaluronan synthases in response to external stimuli. Biochem J 348(Pt 1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Karousou E, Kamiryo M, Skandalis SS, Ruusala A, Asteriou T, Passi A, Yamashita H, Hellman U, Heldin CH, Heldin P (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J Biol Chem 285:23647–23654

    Article  CAS  PubMed  Google Scholar 

  • Karvinen S, Pasonen-Seppänen S, Hyttinen JM, Pienimäki JP, Törrönen K, Jokela TA, Tammi MI, Tammi R (2003) Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthases 2 and 3. J Biol Chem 278:49495–49504

    Article  CAS  PubMed  Google Scholar 

  • Kitchen JR, Cysyk RL (1995) Synthesis and release of hyaluronic acid by Swiss 3T3 fibroblasts. Biochem J 309(Pt 2):649–656

    CAS  PubMed  Google Scholar 

  • Kultti A, Rilla K, Tiihonen R, Spicer AP, Tammi RH, Tammi MI (2006) Hyaluronan synthesis induces microvillus-like cell surface protrusions. J Biol Chem 281:15821–15828

    Article  CAS  PubMed  Google Scholar 

  • Laurent TC, Fraser JR (1986) The properties and turnover of hyaluronan. Ciba Found Symp 12487132709:9–29

    Google Scholar 

  • Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, Maytin EV (2012) Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 132:198–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maytin EV, Chung HH, Seetharaman VM (2004) Hyaluronan participates in the epidermal response to disruption of the permeability barrier in vivo. Am J Pathol 165:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Mullegger J, Rustom A, Kreil G, Gerdes HH, Lepperdinger G (2003) ‘Piggy-back’ transport of Xenopus hyaluronan synthase (XHAS1) via the secretory pathway to the plasma membrane. Biol Chem 384:175–182

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Knudson CB, Nietfeld JJ, Margulis A, Knudson W (1999) Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. J Biol Chem 274:21893–22189

    Article  CAS  PubMed  Google Scholar 

  • Nykopp TK, Rilla K, Sironen R, Tammi MI, Tammi RH, Hämäläinen K, Heikkinen AM, Komulainen M, Kosma VM, Anttila M (2009) Expression of hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in serous ovarian carcinomas: inverse correlation between HYAL1 and hyaluronan content. BMC Cancer 9:143

    Article  PubMed Central  PubMed  Google Scholar 

  • Nykopp TK, Rilla K, Tammi MI, Tammi RH, Sironen R, Hämäläinen K, Kosma VM, Heinonen S, Anttila M (2010) Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma. BMC Cancer 10:512

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohno S, Tanimoto K, Fujimoto K, Ijuin C, Honda K, Tanaka N, Doi T, Nakahara M, Tanne K (2001) Molecular cloning of rabbit hyaluronic acid synthases and their expression patterns in synovial membrane and articular cartilage. Biochim Biophys Acta 1520:71–78

    Article  CAS  PubMed  Google Scholar 

  • Parkkinen JJ, Hakkinen TP, Savolainen S, Wang C, Tammi R, Ågren UM, Lammi MJ, Arokoski J, Helminen HJ, Tammi MI (1996) Distribution of hyaluronan in articular cartilage as probed by a biotinylated binding region of aggrecan. Histochem Cell Biol 105:187–194

    Article  CAS  PubMed  Google Scholar 

  • Pasonen-Seppänen S, Karvinen S, Törrönen K, Hyttinen JM, Jokela T, Lammi MJ, Tammi MI, Tammi R (2003) EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation. J Invest Dermatol 120:1038–1044

    Article  PubMed  Google Scholar 

  • Pienimäki JP, Rilla K, Fulop C, Sironen RK, Karvinen S, Pasonen S, Lammi MJ, Tammi R, Hascall VC, Tammi MI (2001) Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan. J Biol Chem 276:20428–20435

    Article  PubMed  Google Scholar 

  • Recklies AD, White C, Melching L, Roughley PJ (2001) Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. Biochem J 354:17–24

    Article  CAS  PubMed  Google Scholar 

  • Rilla K, Siiskonen H, Spicer AP, Hyttinen JM, Tammi MI, Tammi RH (2005) Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J Biol Chem 280:31890–31897

    Article  CAS  PubMed  Google Scholar 

  • Rilla K, Oikari S, Jokela TA, Hyttinen JM, Kärnä R, Tammi RH, Tammi MI (2013) Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J Biol Chem 288:5973–5983

    Article  CAS  PubMed  Google Scholar 

  • Spicer AP, McDonald JA (1998) Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J Biol Chem 273:1923–1932

    Article  CAS  PubMed  Google Scholar 

  • Spicer AP, Nguyen TK (1999) Mammalian hyaluronan synthases: investigation of functional relationships in vivo. Biochem Soc Trans 27:109–115

    CAS  PubMed  Google Scholar 

  • Suzuki K, Yamamoto T, Usui T, Heldin P, Yamashita H (2003) Expression of hyaluronan synthase in intraocular proliferative diseases: regulation of expression in human vascular endothelial cells by transforming growth factor-beta. Jpn J Ophthalmol 47:557–564

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Ågren UM, Tuhkanen AL, Tammi M (1994) Hyaluronan metabolism in skin. Prog Histochem Cytochem 29:1–81

    Article  CAS  PubMed  Google Scholar 

  • Tammi R, Pasonen-Seppänen S, Kolehmainen E, Tammi M (2005) Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 124:898–905

    Article  CAS  PubMed  Google Scholar 

  • Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, Tammi MI (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Tien JY, Spicer AP (2005) Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns. Dev Dyn 233:130–141

    Article  CAS  PubMed  Google Scholar 

  • Vigetti D, Clerici M, Deleonibus S, Karousou E, Viola M, Moretto P, Heldin P, Hascall VC, De Luca G, Passi A (2011) Hyaluronan synthesis is inhibited by adenosine monophosphate-activated protein kinase through the regulation of HAS2 activity in human aortic smooth muscle cells. J Biol Chem 286:7917–7924

    Article  CAS  PubMed  Google Scholar 

  • Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A (2012) Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 287:35544–35555

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Tammi M, Tammi R (1992) Distribution of hyaluronan and its CD44 receptor in the epithelia of human skin appendages. Histochemistry 98:105–112

    Article  CAS  PubMed  Google Scholar 

  • Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272:13997–14000

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson TS, Bressler SL, Evanko SP, Braun KR, Wight TN (2006) Overexpression of hyaluronan synthases alters vascular smooth muscle cell phenotype and promotes monocyte adhesion. J Cell Physiol 206:378–385

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Itano N, Hata K, Ueda M, Kimata K (2004) Differential regulation by IL-1beta and EGF of expression of three different hyaluronan synthases in oral mucosal epithelial cells and fibroblasts and dermal fibroblasts: quantitative analysis using real-time RT-PCR. J Invest Dermatol 122:631–639

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Itano N, Yamada Y, Kimata K (2000) In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity. J Biol Chem 275:497–506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Eija Kettunen, Kari Kotikumpu, Eija Rahunen, and Arja Venäläinen for expert technical assistance. This work was supported by the Academy of Finland, Grant #40807 and #54062 (M.T.), and by the grants from The North Savo Cultural Foundation (K.R.), Kuopio University Foundation (K.R.), The North Savo Cancer Foundation (K.R), Paavo Koistinen Foundation (K.R. and K.T.), The Finnish Cancer Foundation (R.T.), Sigrid Juselius Foundation (RT and MT), The Spearhead Funds of the University of Eastern Finland (Cancer Center of Eastern Finland), and the EVO funds of Kuopio University Hospital (M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsi Rilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Törrönen, K., Nikunen, K., Kärnä, R. et al. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem Cell Biol 141, 17–31 (2014). https://doi.org/10.1007/s00418-013-1143-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1143-4

Keywords

Navigation