Skip to main content

Advertisement

Log in

Peroxisomes in dental tissues of the mouse

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Patients with mild forms of peroxisomal biogenesis disorders show facial dysmorphism and exhibit dentition problems accompanied by enamel hypoplasia. However, no information is available on the role of peroxisomes in dental and paradontal tissues. Therefore, we studied the distribution of these organelles, their protein composition and the expression of corresponding genes during dental development and in mature decalcified teeth in mice. Perfusion-fixed heads of mice of different developmental stages (E13.5 to adult) were cut in sagittal direction into two halves and embedded in paraffin for serial sectioning and subsequent peroxidase-based immunohistochemistry or double-immunofluorescence preparations. Frozen, unfixed heads of newborn mice were used for cryosectioning and subsequent laser-assisted microdissection of ameloblasts and odontoblasts, RNA isolation and RT-PCR analysis. Our results revealed the presence of peroxisomes already in the bud stage of dental development. An increase in peroxisome abundance was noted during differentiation of ameloblasts and odontoblasts with the highest number of organelles in Tomes’ processes of mature ameloblasts. A strong heterogeneity of peroxisomal enzyme content developed within differentiated dental cell types. A drastic down-regulation of catalase in maturing ameloblasts was noted in contrast to high levels of lipid metabolizing enzymes in peroxisomes of these cells. As known from the literature, differentiated ameloblasts are more prone to oxidative damage which could be explained by the low catalase levels inside of this cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PFA:

Paraformaldehyde

PBS:

Phosphate-buffered saline

CAT:

Catalase

ROS:

Reactive oxygen species

References

  • Ahlemeyer B, Neubert I, Kovacs WJ, Baumgart-Vogt E (2007) Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol 505:1–17

    Article  PubMed  CAS  Google Scholar 

  • Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D, van Veldhoven PP, Mannaerts GP (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Fahimi HD, Steininger H, Grabenbauer M (2003) A review of morphological techniques for detection of peroxisomal (and mitochondrial) proteins and their corresponding mRNAs during ontogenesis in mice: application to the PEX5-knockout mouse with Zellweger syndrome. Microsc Res Tech 61:121–138

    Article  PubMed  CAS  Google Scholar 

  • Braverman N, Zhang R, Chen L, Nimmo G, Scheper S, Tran T, Chaudhury R, Moser A, Steinberg S (2010) A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 99:408–416

    Article  PubMed  CAS  Google Scholar 

  • Couve E (1986) Ultrastructural changes during the life cycle of human odontoblasts. Arch Oral Biol 31:643–651

    Article  PubMed  CAS  Google Scholar 

  • De Duve C (1965) The separation and characterization of subcellular particles. Harvey Lect 59:49–87

    PubMed  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Domingues MG, Jaeger MM, Araujo VC, Araujo NS (2000) Expression of cytokeratins in human enamel organ. Eur J Oral Sci 108:43–47

    Article  PubMed  CAS  Google Scholar 

  • Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD, Beier K, Lindauer M, Schad A, Zhan J, Pill J, Rebel W, Völkl A, Baumgart E (1996) Zonal heterogeneity of peroxisome proliferation in rat liver. Ann N Y Acad Sci 804:341–361

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Morrell JC, Jones JM, Gould SJ (2004) PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J Cell Biol 164:863–875

    Google Scholar 

  • Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Fincham AG, Belcourt AB, Termine JD (1983) Molecular composition of the protein matrix of developing human dental enamel. J Dent Res 62:11–15

    Article  PubMed  CAS  Google Scholar 

  • Fleischmannova J, Matalova E, Tucker AS, Sharpe PT (2008) Mouse models of tooth abnormalities. Eur J Oral Sci 116:1–10

    Article  PubMed  Google Scholar 

  • Gartner J (2000) Organelle disease: peroxisomal disorders. Eur J Pediatr 159(Suppl 3):S236–S239

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Septier D (2002) Phospholipids in amelogenesis and dentinogenesis. Crit Rev Oral Biol Med 13:276–290

    Article  PubMed  CAS  Google Scholar 

  • Grabenbauer M, Fahimi HD, Baumgart E (2001) Detection of peroxisomal proteins and their mRNAs in serial sections of fetal and newborn mouse organs. J Histochem Cytochem 49:155–164

    Article  PubMed  CAS  Google Scholar 

  • Grant P, Ahlemeyer B, Karnati S, Berg T, Stelzig I, Nenicu A, Kuchelmeister K, Crane DI, Baumgart-Vogt E (2013) The biogenesis protein PEX14 is an optimal marker for the identification and localization of peroxisomes in different cell types, tissues, and species in morphological studies. Histochem Cell Biol. doi:10.1007/s00418-013-1133-6

  • Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters JM, Gonzalez FJ, Yeldandi AV, Rao MS, Reddy JK (1999) Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274:19228–19236

    Article  PubMed  CAS  Google Scholar 

  • Hiltunen JK, Karki T, Hassinen IE, Osmundsen H (1986) beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J Biol Chem 261:16484–16493

    PubMed  CAS  Google Scholar 

  • Hiltunen JK, Filppula SA, Koivuranta KT, Siivari K, Qin YM, Hayrinen HM (1996) Peroxisomal beta-oxidation and polyunsaturated fatty acids. Ann N Y Acad Sci 804:116–128

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M, Olson K, Cavender A, Pasqualini R, Gaikwad J, D’Souza RN (2001) Gene expression in a pure population of odontoblasts isolated by laser-capture microdissection. J Dent Res 80:1963–1967

    Article  PubMed  CAS  Google Scholar 

  • Huyghe S, Casteels M, Janssen A, Meulders L, Mannaerts GP, Declercq PE, Van Veldhoven PP, Baes M (2001) Prenatal and postnatal development of peroxisomal lipid-metabolizing pathways in the mouse. Biochem J 353:673–680

    Google Scholar 

  • Immenschuh S, Baumgart-Vogt E, Tan M, Iwahara S, Ramadori G, Fahimi HD (2003) Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. J Histochem Cytochem 51:1621–1631

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Lüers GH, Zischka H, Ueffing M, Völkl A (2006) Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 6:804–816

    Article  PubMed  CAS  Google Scholar 

  • Jedlitschky G, Huber M, Volkl A, Muller M, Leier I, Muller J, Lehmann WD, Fahimi HD, Keppler D (1991) Peroxisomal degradation of leukotrienes by beta-oxidation from the omega-end. J Biol Chem 266:24763–24772

    PubMed  CAS  Google Scholar 

  • Josephsen K, Smith CE, Nanci A (1999) Selective but nonspecific immunolabeling of enamel protein-associated compartments by a monoclonal antibody against vimentin. J Histochem Cytochem 47:1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Kagayama M, Zhu JX, Sasano Y, Sato H, Mayanagi H (1997) Development of interglobular dentine in rat molars and its relation to maturation of enamel. Anat Embryol (Berl) 196:477–483

    Article  CAS  Google Scholar 

  • Karnati S, Baumgart-Vogt E (2008) Peroxisomes in mouse and human lung: their involvement in pulmonary lipid metabolism. Histochem Cell Biol 130:719–740

    Article  PubMed  CAS  Google Scholar 

  • Karnati S, Baumgart-Vogt E (2009) Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 131:447–454

    Article  PubMed  CAS  Google Scholar 

  • Karnati S, Luers G, Pfreimer S, Baumgart-Vogt E (2013) Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol. doi:10.1007/s00418-013-1099-4

    Google Scholar 

  • Krey G, Mahfoudi A, Wahli W (1995) Functional interactions of peroxisome proliferator-activated receptor, retinoid-X receptor, and Sp1 in the transcriptional regulation of the acyl-coenzyme-A oxidase promoter. Mol Endocrinol 9:219–231

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JW, Foxworthy PS, Perry DN, Jensen CB, Giera DD, Meador VP, Eacho PI (1995) Nafenopin-induced peroxisome proliferation in vitamin A deficient rats. Biochem Pharmacol 49:915–919

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Lim BS, Lee YK, Yang HC (2006) Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 22:39–46

    Article  PubMed  CAS  Google Scholar 

  • Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    Article  PubMed  CAS  Google Scholar 

  • Lombardi T, Samson J, Muhlhauser J, Fiore-Donno G, Maggiano N, Castellucci M (1992) Expression of intermediate filaments and actins in human dental pulp and embryonic dental papilla. Anat Rec 234:587–592

    Article  PubMed  CAS  Google Scholar 

  • Masters CJ (1996) Cellular signalling: the role of the peroxisome. Cell Signal 8:197–208

    Article  PubMed  CAS  Google Scholar 

  • Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI (2003) Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23:5947–5957

    Article  PubMed  CAS  Google Scholar 

  • McLachlan JL, Smith AJ, Cooper PR (2003) Piezo-power microdissection of mature human dental tissue. Arch Oral Biol 48:731–736

    Article  PubMed  Google Scholar 

  • Nanci A, Bendayan M, Slavkin HC (1985) Enamel protein biosynthesis and secretion in mouse incisor secretory ameloblasts as revealed by high-resolution immunocytochemistry. J Histochem Cytochem 33:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Nenicu A, Lüers GH, Kovacs W, Otte D, Zimmer A, Bergmann M, Baumgart-Vogt E (2007) Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ cells and distinct somatic cell types of the testis. Biol Reprod 77:1060–1072

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Wataha JC, Lewis JB, Kaga M, Lockwood PE, Messer RL, Sano H (2005) Dental adhesive compounds alter glutathione levels but not glutathione redox balance in human THP-1 monocytic cells. J Biomed Mater Res B Appl Biomater 73:308–314

    PubMed  CAS  Google Scholar 

  • Obert M, Ahlemeyer B, Baumgart-Vogt E, Traupe H (2005) Flat-panel volumetric computed tomography: a new method for visualizing fine bone detail in living mice. J Comput Assist Tomogr 29:560–565

    Article  PubMed  Google Scholar 

  • Oida S, Nagano T, Yamakoshi Y, Ando H, Yamada M, Fukae M (2002) Amelogenin gene expression in porcine odontoblasts. J Dent Res 81:103–108

    Article  PubMed  CAS  Google Scholar 

  • Otsuji W, Tanase S, Yoshida S, Bawden JW (1999) The immunohistochemical localization of the interferon-gamma and granulocyte colony-stimulating factor receptors during early amelogenesis in rat molars. Arch Oral Biol 44:173–181

    Article  PubMed  CAS  Google Scholar 

  • Poll-The BT, Gootjes J, Duran M, De Klerk JB, Wenniger-Prick LJ, Admiraal RJ, Waterham HR, Wanders RJ, Barth PG (2004) Peroxisome biogenesis disorders with prolonged survival: phenotypic expression in a cohort of 31 patients. Am J Med Genet A 126A:333–338

    Article  PubMed  Google Scholar 

  • Provenza DV (1988) Fundamentals of oral histology and embryology. Lea & Febiger, Philadelphia

    Google Scholar 

  • Ravindranath RM, Basilrose RM Sr, Ravindranath NH, Vaitheesvaran B (2003) Amelogenin interacts with cytokeratin-5 in ameloblasts during enamel growth. J Biol Chem 278:20293–20302

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Briggs HD, Atkinson PJ (1981) Histology of enamel organ and chemical composition of adjacent enamel in rat incisors. Calcif Tissue Int 33:513–520

    Article  PubMed  CAS  Google Scholar 

  • Roels F, Espeel M, Pauwels M, De Craemer D, Egberts HJ, van der Spek P (1991) Different types of peroxisomes in human duodenal epithelium. Gut 32:858–865

    Article  PubMed  CAS  Google Scholar 

  • Ruch JV (1987) Determinisms of odontogenesis. Revis Biol Celular 14:1–99

    PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122:383–393

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Thiemann M, Fahimi HD (2003) Peroxisomal motility and interaction with microtubules. Microsc Res Tech 61:171–178

    Article  PubMed  CAS  Google Scholar 

  • Sosenko IR, Innis SM, Frank L (1991) Intralipid increases lung polyunsaturated fatty acids and protects newborn rats from oxygen toxicity. Pediatr Res 30:413–417

    Article  PubMed  CAS  Google Scholar 

  • Spagnuolo G, Annunziata M, Rengo S (2004) Cytotoxicity and oxidative stress caused by dental adhesive systems cured with halogen and LED lights. Clin Oral Investig 8:81–85

    Article  PubMed  Google Scholar 

  • Stier H, Fahimi HD, Van Veldhoven PP, Mannaerts GP, Volkl A, Baumgart E (1998) Maturation of peroxisomes in differentiating human hepatoblastoma cells (HepG2): possible involvement of the peroxisome proliferator-activated receptor alpha (PPAR alpha). Differentiation 64:55–66

    Article  PubMed  CAS  Google Scholar 

  • Subramani S (2002) Hitchhiking fads en route to peroxisomes. J Cell Biol 156:415–417

    Article  PubMed  CAS  Google Scholar 

  • Ten Cate JM (1994) In situ models, physico-chemical aspects. Adv Dent Res 8:125–133

    PubMed  Google Scholar 

  • Van Dijck PW, De Kruijff B, Van Deenen LL, De Gier J, Demel RA (1976) The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers. Biochim Biophys Acta 455:576–587

    Article  PubMed  Google Scholar 

  • Wanders RJ (2004) Metabolic and molecular basis of peroxisomal disorders: a review. Am J Med Genet A 126A:355–375

    Article  PubMed  Google Scholar 

  • Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S (1997) Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J Cell Biol 136:71–80

    Article  PubMed  CAS  Google Scholar 

  • Wiese S, Gronemeyer T, Ofman R, Kunze M, Grou CP, Almeida JA, Eisenacher M, Stephan C, Hayen H, Schollenberger L, Korosec T, Waterham HR, Schliebs W, Erdmann R, Berger J, Meyer HE, Just W, Azevedo JE, Wanders RJ, Warscheid B (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas P Jr (2003) Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn 228:651–663

    Article  PubMed  CAS  Google Scholar 

  • Zoeller RA, Lake AC, Nagan N, Gaposchkin DP, Legner MA, Lieberthal W (1999) Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem J 338(Pt 3):769–776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Magdalena Gottwald is gratefully acknowledged. Further, we would like to thank Profs. Denis I.Crane, Steve Gould, Paul P. Van Veldhoven for providing us with some antibodies (see Table 1). Furthermore, we thank Dr. Martin Obert, Department of Neuroradiology of the University Hospital Marburg-Giessen for checking the decalcification of dental tissue by volumetric computer tomography (VCT). Finally, we are indebted to Michelle Woods for carefully reading and correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eveline Baumgart-Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzig, I., Karnati, S., Valerius, K.P. et al. Peroxisomes in dental tissues of the mouse. Histochem Cell Biol 140, 443–462 (2013). https://doi.org/10.1007/s00418-013-1131-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1131-8

Keywords

Navigation