Skip to main content
Log in

Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Superoxide dismutases (SODs) are metalloenzymes that belong to the essential antioxidant enzyme systems of virtually all oxygen-respiring organisms. SODs catalyze the dismutation of highly reactive superoxide radicals into hydrogen peroxide and molecular oxygen. For the subcellular localization of the manganese superoxide dismutase (SOD2) in eukaryotic cells, a dual mitochondrial localization and peroxisomal localization were proposed in the literature. However, our own observation from immunofluorescence preparations of human and mouse tissues suggested that SOD2 serves as an excellent marker protein for mitochondria but never co-localized with peroxisomes. To clarify whether our observations were correct, we have carefully reinvestigated the subcellular localization of SOD2 using sensitive double-immunofluorescence methods on frozen and paraffin sections as well as in cell culture preparations. In addition, ultrastructural analyses were performed with post-embedding immunoelectron microscopy on LR White sections as well as labeling of ultrathin cryosections with various immunogold techniques. In all morphological experiments, the SOD2 localization was compared to one of the catalase, a typical marker protein for peroxisomes, solely localized in these organelles. Moreover, biochemical subcellular fractions of mouse liver was used to isolate enriched organelles and highly purified peroxisomal fractions for Western blot analyses of the exact subcellular distributions of SOD2 and catalase. All results with the various methodologies, tissues, and cell types used revealed that catalase and SOD2 were always confined to distinct and separate subcellular compartments. SOD2 was unequivocally in mitochondria, but never present in peroxisomes. Furthermore, our results are supported by accumulating database information on organelle proteomes that also indicate that SOD2 is a pure mitochondrial protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AECII:

Alveolar epithelial cell type II

PFA:

Paraformaldehyde

PBS:

Phosphate-buffered saline

SOD2:

Superoxide dismutase 2

CAT:

Catalase

ROS:

Reactive oxygen species

References

  • Abdelraheim SR, Spiller DG, McLennan AG (2003) Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein. Biochem J 374:329–335

    Article  PubMed  CAS  Google Scholar 

  • Antonenkov VD, Hiltunen JK (2006) Peroxisomal membrane permeability and solute transfer. Biochim Biophys Acta 1763:1697–1706

    Article  PubMed  CAS  Google Scholar 

  • Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2009) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13:525–537

    Article  Google Scholar 

  • Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441–1453

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E (1997) Application of in situ hybridization, cytochemical and immunocytochemical techniques for the investigation of peroxisomes. A review including novel data. Robert Feulgen Prize Lecture 1997. Histochem Cell Biol 108:185–210

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Fahimi HD, Steininger H, Grabenbauer M (2003) A review of morphological techniques for detection of peroxisomal (and mitochondrial) proteins and their corresponding mRNAs during ontogenesis in mice: application to the PEX5-knockout mouse with Zellweger syndrome. Microsc Res Tech 61:121–138

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Casareno RL, Waggoner D, Gitlin JD (1998) The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J Biol Chem 273:23625–23628

    Article  PubMed  CAS  Google Scholar 

  • Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758

    Article  PubMed  CAS  Google Scholar 

  • Da Cruz S, Xenarios I, Langridge J, Vilbois F, Parone PA, Martinou JC (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278:41566–41571

    Article  PubMed  Google Scholar 

  • Dansen TB, Wirtz KW (2001) The peroxisome in oxidative stress. IUBMB Life 51:223–230

    Article  PubMed  CAS  Google Scholar 

  • Dhaunsi GS, Gulati S, Singh AK, Orak JK, Asayama K, Singh I (1992) Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence. J Biol Chem 267:6870–6873

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Elofsson A, von Heijne G, Cristobal S (2003) In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol 330:443–456

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD, Reich D, Volkl A, Baumgart E (1996) Contributions of the immunogold technique to investigation of the biology of peroxisomes. Histochem Cell Biol 106:105–114

    Article  PubMed  CAS  Google Scholar 

  • Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43:689–696

    Article  PubMed  CAS  Google Scholar 

  • Grace SC (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–1886

    Article  PubMed  CAS  Google Scholar 

  • Immenschuh S, Baumgart-Vogt E (2005) Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid Redox Signal 7:768–777

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Lüers GH, Zischka H, Ueffing M, Völkl A (2006) Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 6:804–816

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Luers GH, Li KW, Loos M, Volkl A (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282:23055–23069

    Article  PubMed  CAS  Google Scholar 

  • Islinger M, Li KW, Seitz J, Volkl A, Luers GH (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes—evidence for a natural piggyback import mechanism in mammals. Traffic 10:1711–1721

    Article  PubMed  CAS  Google Scholar 

  • Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M (2003) Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol 44:1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Karnati S, Baumgart-Vogt E (2008) Peroxisomes in mouse and human lung: their involvement in pulmonary lipid metabolism. Histochem Cell Biol 130:719–740

    Article  PubMed  CAS  Google Scholar 

  • Karnati S, Baumgart-Vogt E (2009) Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 131:447–454

    Article  PubMed  CAS  Google Scholar 

  • Keele BB Jr, McCord JM, Fridovich I (1970) Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J Biol Chem 245:6176–6181

    PubMed  CAS  Google Scholar 

  • Keller GA, Warner TG, Steimer KS, Hallewell RA (1991) Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci USA 88:7381–7385

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279:421–428

    Article  PubMed  CAS  Google Scholar 

  • Kira Y, Sato EF, Inoue M (2002) Association of Cu, Zn-type superoxide dismutase with mitochondria and peroxisomes. Arch Biochem Biophys 399:96–102

    Article  PubMed  CAS  Google Scholar 

  • Kurochkin IV, Nagashima T, Konagaya A, Schonbach C (2005) Sequence-based discovery of the human and rodent peroxisomal proteome. Appl Bioinform 4:93–104

    Article  CAS  Google Scholar 

  • Lüers GH, Schad A, Fahimi HD, Völkl A, Seitz J (2003) Expression of peroxisomal proteins provides clear evidence for the presence of peroxisomes in the male germ cell line GC1spg. Cytogenet Genome Res 103(3–4):360–365

    PubMed  Google Scholar 

  • Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA 79:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Marklund SL (1984) Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem J 222:649–655

    PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) über ber Natur und Ursprung der Chromatophoren m Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Mi J, Kirchner E, Cristobal S (2007) Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics 7:1916–1928

    Article  PubMed  CAS  Google Scholar 

  • Miao L, St. Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356

    Article  PubMed  CAS  Google Scholar 

  • Moldovan L, Moldovan NI (2004) Oxygen free radicals and redox biology of organelles. Histochem Cell Biol 122:395–412

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Nardacci R, Ceru MP (1997) Regional and ultrastructural immunolocalization of copper-zinc superoxide dismutase in rat central nervous system. J Histochem Cytochem 45:1611–1622

    Article  PubMed  CAS  Google Scholar 

  • Nenicu A, Luers GH, Kovacs W, David M, Zimmer A, Bergmann M, Baumgart-Vogt E (2007) Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ cells and distinct somatic cell types of the testis. Biol Reprod 77:1060–1072

    Article  PubMed  CAS  Google Scholar 

  • Newman GR, Jasani B, Williams ED (1983) A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem J 15:543–555

    Article  PubMed  CAS  Google Scholar 

  • Nozik-Grayck E, Suliman HB, Piantadosi CA (2005) Extracellular superoxide dismutase. Int J Biochem Cell Biol 37:2466–2471

    Article  PubMed  CAS  Google Scholar 

  • Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    Article  PubMed  CAS  Google Scholar 

  • Rickett GM, Kelly FJ (1990) Developmental expression of antioxidant enzymes in guinea pig lung and liver. Development 108:331–336

    PubMed  CAS  Google Scholar 

  • Roth J (1982) Applications of immunocolloids in light microscopy. Preparation of protein A-silver and protein A-gold complexes and their application for localization of single and multiple antigens in paraffin sections. J Histochem Cytochem 30:691–696

    Article  PubMed  CAS  Google Scholar 

  • Schafer H, Nau K, Sickmann A, Erdmann R, Meyer HE (2001) Identification of peroxisomal membrane proteins of Saccharomyces cerevisiae by mass spectrometry. Electrophoresis 22:2955–2968

    Article  PubMed  CAS  Google Scholar 

  • Schatz G (1987) 17th Sir Hans Krebs lecture. Signals guiding proteins to their correct locations in mitochondria. Eur J Biochem 165:1–6

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  PubMed  CAS  Google Scholar 

  • Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 226:561–565

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Dobashi K, Gupta MP, Asayama K, Singh I, Orak JK (1999) Manganese superoxide dismutase in rat liver peroxisomes: biochemical and immunochemical evidence. Mol Cell Biochem 197:7–12

    Article  PubMed  CAS  Google Scholar 

  • Slot JW, Geuze HJ (1981) Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol 90:533–536

    Article  PubMed  CAS  Google Scholar 

  • Slot JW, Geuze HJ, Freeman BA, Crapo JD (1986) Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab Invest 55:363–371

    PubMed  CAS  Google Scholar 

  • Vance PG, Keele BB Jr, Rajagopalan KV (1972) Superoxide dismutase from Streptococcus mutans. Isolation and characterization of two forms of the enzyme. J Biol Chem 247:4782–4786

    PubMed  CAS  Google Scholar 

  • Wallin IE (1922) A note on the morphology of bacteria symbiotic in the tissues of higher organisms. J Bacteriol 7:471–474

    PubMed  CAS  Google Scholar 

  • Wanders RJ, Denis S (1992) Identification of superoxide dismutase in rat liver peroxisomes. Biochim Biophys Acta 1115:259–262

    Article  PubMed  CAS  Google Scholar 

  • Weisiger RA, Fridovich I (1973a) Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796

    PubMed  CAS  Google Scholar 

  • Weisiger RA, Fridovich I (1973b) Superoxide dismutase. Organelle specificity. J Biol Chem 248:3582–3592

    PubMed  CAS  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Klaus-Peter Valerius for help in animal perfusions. The excellent technical assistance of Elke Richter and Bianca Pfeiffer is gratefully acknowledged. We would like to thank Profs. Denis I. Crane for providing us the catalase antibody (see Table 1). Finally, we are indebted to Jessica Woods for carefully reading and correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eveline Baumgart-Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnati, S., Lüers, G., Pfreimer, S. et al. Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol 140, 105–117 (2013). https://doi.org/10.1007/s00418-013-1099-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1099-4

Keywords

Navigation