Skip to main content

Advertisement

Log in

GABAergic signaling in the pulmonary neuroepithelial body microenvironment: functional imaging in GAD67-GFP mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates, but has also been reported in multiple cell types outside the CNS. A GABAergic system has been proposed in neuroepithelial bodies (NEBs) in monkey lungs. Pulmonary NEBs are known as complex intraepithelial sensory airway receptors and are part of the NEB microenvironment. Aim of the present study was to unravel a GABAergic signaling system in the NEB microenvironment in mouse lungs, enabling the use of genetically modified animals for future functional studies. Immunostaining of mouse lungs revealed that glutamic acid decarboxylase 65/67 (GAD65/67), a rate-limiting enzyme in the biosynthesis of GABA, and the vesicular GABA transporter (VGAT) were exclusively expressed in NEB cells. In GAD67-green fluorescent protein (GFP) knock-in mice, all pulmonary NEBs appeared to express GFP. For confocal live cell imaging, ex vivo vibratome lung slices of GAD67-GFP mice can be directly loaded with fluorescent functional probes, e.g. a red-fluorescent calcium dye, without the necessity of time-consuming prior live visualization of NEBs. RT-PCR of the NEB microenvironment obtained by laser microdissection revealed the presence of both GABAA and GABAB (R1 and R2) receptors, which was confirmed by immunostaining. In conclusion, the present study not only revealed the presence of a GABAergic signaling pathway, but also the very selective expression of GFP in pulmonary NEBs in a GAD67-GFP mouse model. Different proof of concept experiments have clearly shown that adoption of the GAD67-GFP mouse model will certainly boost future functional imaging and gene expression analysis of the mouse NEB microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriaensen D, Brouns I, Van Genechten J, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec 270A:25–40

    Article  Google Scholar 

  • Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans JP (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960–970

    Article  PubMed  CAS  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    Article  PubMed  CAS  Google Scholar 

  • Borodinsky LN, Spitzer NC (2007) Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc Natl Acad Sci USA 104:335–340

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans JP, Adriaensen D (2009) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131:55–74

    Article  PubMed  CAS  Google Scholar 

  • Brouns I, Pintelon I, Timmermans JP, Adriaensen D (2012) Novel insights in the neurochemistry and function of pulmonary sensory receptors. Adv Anat Embryol Cell Biol 211:1–115

    Article  PubMed  Google Scholar 

  • Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89:2115–2119

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115:201–214

    Article  PubMed  CAS  Google Scholar 

  • Cutz E, Fu XW, Yeger H, Peers C, Kemp PJ (2003) Oxygen sensing in pulmonary neuroepithelial bodies and related tumor cell models. In: Lahiri S, Semenza GL, Prabhakar NR (eds) Lung oxygen sensing. Marcel Dekker, New York, pp 567–602

    Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans JP, Adriaensen D (2008) Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 39:180–189

    Article  PubMed  Google Scholar 

  • De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans JP, Kemp PJ, Adriaensen D (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23:1153–1160

    Article  PubMed  Google Scholar 

  • Fu XW, Spindel ER (2009) Recruitment of GABA(A) receptors in chemoreceptor pulmonary neuroepithelial bodies by prenatal nicotine exposure in monkey lung. Adv Exp Med Biol 648:439–445

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Nurse CA, Wang YT, Cutz E (1999) Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit. J Physiol 514:139–150

    Article  PubMed  CAS  Google Scholar 

  • Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci USA 97:4374–4379

    Article  PubMed  CAS  Google Scholar 

  • Kaufman DL, Houser CR, Tobin AJ (1991) Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56:720–723

    Article  PubMed  CAS  Google Scholar 

  • Kemp PJ, Searle GJ, Hartness ME, Lewis A, Miller P, Williams S, Wootton P, Adriaensen D, Peers C (2003) Acute oxygen sensing in cellular models: relevance to the physiology of pulmonary neuroepithelial and carotid bodies. Anat Rec 270:41–50

    Article  Google Scholar 

  • Knowles MR, Clarke LL, Boucher RC (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med 325:533–538

    Article  PubMed  CAS  Google Scholar 

  • Kouadjo KE, Nishida Y, Cadrin-Girard JF, Yoshioka M, St-Amand J (2007) Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics 8:127

    Article  PubMed  Google Scholar 

  • Lauweryns JM, Van Lommel A (1986) Effect of various vagotomy procedures on the reaction to hypoxia of rabbit neuroepithelial bodies: modulation by intrapulmonary axon reflexes. Exp Lung Res 11:319–339

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns JM, Cokelaere M, Theunynck P (1972) Neuroepithelial bodies in the respiratory mucosa of various mammals. A light optical, histochemical and ultrastructural investigation. Z Zellforsch Mikrosk Anat 135:569–592

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Gould VE, Moll R, Wiedenmann B, Franke WW (1987) Synatophysin expressed in the bronchopulmonary tract: neuroendocrine cells, neuroepithelial bodies, and neuroendocrine neoplasms. Differentiation 34:115–125

    Article  PubMed  CAS  Google Scholar 

  • Lembrechts R, Pintelon I, Schnorbusch K, Timmermans JP, Adriaensen D, Brouns I (2011) Expression of mechanogated Two-pore-domain potassium channels in mouse lungs: special reference to mechanosensory airway receptors. Histochem Cell Biol 136:371–385

    Article  PubMed  CAS  Google Scholar 

  • Lembrechts R, Brouns I, Schnorbusch K, Pintelon I, Timmermans JP, Adriaensen D (2012) Neuroepithelial bodies as mechanotransducers in the intrapulmonary airway epithelium: involvement of TRPC5. Am J Respir Cell Mol 47(3):315–323

    Article  CAS  Google Scholar 

  • Linnoila RI (2006) Functional facets of the pulmonary neuroendocrine system. Lab Invest 86:425–444

    Article  PubMed  CAS  Google Scholar 

  • Majchrzak M, Di SG (2000) GABA and muscimol as reversible inactivation tools in learning and memory. Neural Plast 7:19–29

    Article  PubMed  CAS  Google Scholar 

  • McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    Article  PubMed  CAS  Google Scholar 

  • Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    PubMed  CAS  Google Scholar 

  • Page AJ, O'Donnell TA, Blackshaw LA (2006) Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 137:627–636

    Google Scholar 

  • Pan J, Copland I, Post M, Yeger H, Cutz E (2006) Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol 290:L185–L193

    Article  PubMed  CAS  Google Scholar 

  • Paul J, Zeilhofer HU, Fritschy JM (2012) Selective distribution of GABA(A) receptor subtypes in mouse spinal dorsal horn neurons and primary afferents. J Comp Neurol 520:3895–3911

    Google Scholar 

  • Pintelon I, De Proost I, Brouns I, Van Herck H, Van Genechten J, Van Meir F, Timmermans JP, Adriaensen D (2005) Selective visualisation of neuroepithelial bodies in vibratome slices of living lung by 4-Di-2-ASP in various animal species. Cell Tissue Res 321:21–33

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Kakizaki T, Hayashi R, Nishimaru H, Furukawa T, Nakazato Y, Takamori S, Ebihara S, Uematsu M, Mishina M, Miyazaki J, Yokoyama M, Konishi S, Inoue K, Fukuda A, Fukumoto M, Nakamura K, Obata K, Yanagawa Y (2010) The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice. Mol Brain 3:40

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann DW (1987) Morphology and cytochemistry of the endocrine epithelial system in the lung. Int Rev Cytol 106:35–88

    Article  PubMed  CAS  Google Scholar 

  • Schuller HM, Al-Wadei HA, Majidi M (2008) Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis 29:1979–1985

    Article  PubMed  CAS  Google Scholar 

  • Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    Article  PubMed  CAS  Google Scholar 

  • Sorokin SP, Hoyt RFJ (1989) Neuroepithelial bodies and solitary small-granule cells. In: Massaro D (ed) Lung cell Biology. Marcel Dekker, New York, pp 191–344

    Google Scholar 

  • Sorokin SP, Hoyt RFJ (1990) On the supposed function of neuroepithelial bodies in adult mammalian lungs. News Physiol Sci 5:89–95

    Google Scholar 

  • Sutherland KD, Proost N, Brouns I, Adriaensen D, Song J-Y, Berns A (2011) Cells of origins of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19:754–764

    Article  PubMed  CAS  Google Scholar 

  • Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  PubMed  CAS  Google Scholar 

  • Xiang YY, Wang S, Liu M, Hirota JA, Li J, Ju W, Fan Y, Kelly MM, Ye B, Orser B, O’Byrne PM, Inman MD, Yang X, Lu WY (2007) A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 13:862–867

    Article  PubMed  CAS  Google Scholar 

  • Yabumoto Y, Watanabe M, Ito Y, Maemura K, Otsuki Y, Nakamura Y, Yanagawa Y, Obata K, Watanabe K (2008) Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice. Med Mol Morphol 41:20–27

    Article  PubMed  CAS  Google Scholar 

  • Young SZ, Bordey A (2009) GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda) 24:171–185

    Article  CAS  Google Scholar 

  • Zhao S, Zhou Y, Gross J, Miao P, Qiu L, Wang D, Chen Q, Feng G (2010) Fluorescent labeling of newborn dentate granule cells in GAD67-GFP transgenic mice: a genetic tool for the study of adult neurogenesis. PLoS One 5:e12506

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of the Fund for Scientific Research-Flanders (FWO; G.0589.11 to D.A. and J-P.T.), the Hercules Foundation (AUAH-09-001 to D.A.) and the University of Antwerp (GOA BOF 2007 to D.A. and KP BOF 2011 to I.B.). We thank Prof. Dr. L.-Y. Lee (University of Kentucky, Lexington, KY, USA) for his initial help with introducing GAD67-GFP mice into our research, F. Terloo for technical assistance, D. De Rijck for help with imaging and illustrations, D. Vindevogel for aid with the manuscript, and S. Kockelberg for administrative help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Adriaensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnorbusch, K., Lembrechts, R., Pintelon, I. et al. GABAergic signaling in the pulmonary neuroepithelial body microenvironment: functional imaging in GAD67-GFP mice. Histochem Cell Biol 140, 549–566 (2013). https://doi.org/10.1007/s00418-013-1093-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1093-x

Keywords

Navigation