Skip to main content

Advertisement

Log in

Intrafusal myosin heavy chain expression of human masseter and biceps muscles at young age shows fundamental similarities but also marked differences

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Muscle spindles are skeletal muscle mechanoreceptors that provide proprioceptive information to the central nervous system. The human adult masseter muscle has greater number, larger and more complex muscle spindles than the adult biceps. For a better knowledge of muscle diversity and physiological properties, this study examined the myosin heavy chain (MyHC) expression of muscle spindle intrafusal fibres in the human young masseter and young biceps muscles by using a panel of monoclonal antibodies (mAbs) against different MyHC isoforms. Eight MyHC isoforms were detected in both muscles-slow-tonic, I, IIa, IIx, foetal, embryonic, α-cardiac and an isoform not previously reported in intrafusal fibres, termed IIx′. Individual fibres co-expressed 2–6 isoforms. MyHC-slow tonic separated bag1, AS-bag1 and bag2 fibres from chain fibres. Typically, bag fibres also expressed MyHC-I and α-cardiac, whereas chain fibres expressed IIa and foetal. In the young masseter 98 % of bag1 showed MyHC-α cardiac versus 30 % in the young biceps, 35 % of bag2 showed MyHC-IIx′ versus none in biceps, 17 % of the chain fibres showed MyHC-I versus 61 % in the biceps. In conclusion, the result showed fundamental similarities in intrafusal MyHC expression between young masseter and biceps, but also marked differences implying muscle-specific proprioceptive control, probably related to diverse evolutionary and developmental origins. Finding of similarities in MyHC expression between young and adult masseter and biceps muscle spindles, respectively, in accordance with previously reported similarities in mATPase fibre type composition suggest early maturation of muscle spindles, preceding extrafusal fibres in growth and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banks RW (1994) The motor innervation of mammalian muscle spindles. Prog Neurobiol 43:323–362

    Article  PubMed  CAS  Google Scholar 

  • Barker D, Banks RW (1994) The muscle spindle. In: Engel A, Franzini-Armstrong C (eds) Myology: basic and clinical, 2nd edn. McGraw-Hill, New York, pp 3333–3336

    Google Scholar 

  • Cho M, Webster SG, Blau HM (1993) Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development. J Cell Biol 121:795–810

    Google Scholar 

  • Ecob-Prince M, Hill M, Brown W (1989) Immunocytochemical demonstration of myosin heavy chain expression in human muscle. J Neurol Sci 91:71–78

    Google Scholar 

  • Eriksson P-O, Thornell L-E (1985) Heterogeneous intrafusal fibre type composition of the human masseter muscle: morphological and enzyme-histochemical characteristics. In: Boyd IA, Gladden MH (eds) The muscle spindle. Stockton, Glasgow, pp 95–100

    Google Scholar 

  • Eriksson P-O, Thornell L-E (1987) Relation to extrafusal fibre-type composition in muscle-spindle structure and location in the human masseter muscle. Arch Oral Biol 32:483–491

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P-O, Thornell L-E (1990) Variation in histochemical enzyme profile and diameter along human masseter intrafusal muscle fibers. Anat Rec 226:168–176

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P-O, Eriksson A, Ringqvist M, Thornell L-E (1980) The reliability of histochemical fibre typing of human necropsy muscles. Histochemistry 65:193–205

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P-O, Butler-Browne GS, Thornell L-E (1994) Immunohistochemical characterization of human masseter muscle spindles. Muscle Nerve 17:31–41

    Article  PubMed  CAS  Google Scholar 

  • Hoh JF (2002) ‘Superfast’ or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. J Exp Biol 205:2203–2210

    PubMed  Google Scholar 

  • Hoh JF (2005) Laryngeal muscle fibre types. Acta Physiol Scand 183:133–149

    Article  PubMed  CAS  Google Scholar 

  • Hoh JF, Hughes S, Kang LHD, Rughani A, Qin H (1993) The biology of cat jaw-closing muscle cells. J Comput Assist Microsc 5:65–70

    Google Scholar 

  • Hughes SM, Cho M, Karsch-Mizrachi I, Travis M, Silberstein L, Leinwand LA, Blau HM (1993) Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol 158:183–199

    Google Scholar 

  • Kjellgren D, Thornell L-E, Andersen J, Pedrosa-Domellöf F (2003) Myosin heavy chain isoforms in human extraocular muscles. Invest Ophthalmol Vis Sci 44:1419–1425

    Article  PubMed  Google Scholar 

  • Kwa SH, Korfage JA, Weijs WA (1995) Function-dependent anatomical parameters of rabbit masseter motor units. J Dent Res 74:1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472:595–614

    PubMed  CAS  Google Scholar 

  • Léger JJ (1985) Institut National de la Santé et de la Recherche Médical, Unité 249, Montpellier, France

  • Liu J-X, Eriksson P-O, Thornell L-E, Pedrosa-Domellöf F (2002) Myosin heavy chain composition of muscle spindles in human biceps brachii. J Histochem Cytochem 50:171–183

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL, Proske U (1984) Non-linear summation of tension in motor units of toad slow muscle. J Physiol 349:95–105

    PubMed  CAS  Google Scholar 

  • Österlund C, Liu J-X, Thornell L-E, Eriksson P-O (2011) Muscle spindle composition and distribution in human young masseter and biceps brachii muscles reveal early growth and maturation. Anat Rec (Hoboken) 294:683–693

    Article  Google Scholar 

  • Österlund C, Lindström M, Thornell L-E, Eriksson P-O (2012) Remarkable heterogeneity in myosin heavy-chain composition of the human young masseter compared with young biceps brachii. Histochem Cell Biol 138:669–682

    Article  PubMed  Google Scholar 

  • Ovalle WK, Smith RS (1972) Histochemical identification of three types of intrafusal muscle fibers in the cat and monkey based on the myosin ATPase reaction. Can J Physiol Pharmacol 50:195–202

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa F, Thornell L-E (1990) Expression of myosin heavy chain isoforms in developing rat muscle spindles. Histochemistry 94:231–244

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa-Domellöf F, Thornell L-E (1994) Expression of myosin heavy chain isoforms in developing human muscle spindles. J Histochem Cytochem 42:77–88

    Article  PubMed  Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    PubMed  CAS  Google Scholar 

  • Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S (2010) Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 588:353–364

    Article  PubMed  CAS  Google Scholar 

  • Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415

    Article  PubMed  CAS  Google Scholar 

  • Sawchak JA, Leung B, Shafiq SA (1985) Characterization of a monoclonal antibody to myosin specific for mammalian and human type II muscle fibers. J Neurol Sci 69:247–254

    Google Scholar 

  • Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lomo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10:197–205

    Google Scholar 

  • Schiaffino S, Reggiani C (1994) Myosin isoforms in mammalian skeletal muscle. J Appl Physiol 77:493–501

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation nd functional significance. Physiol Rev 76:371–423

    PubMed  CAS  Google Scholar 

  • Sciote JJ, Kentish JC (1996) Unloaded shortening velocities of rabbit masseter muscle fibres expressing skeletal or alpha-cardiac myosin heavy chains. J Physiol 492(Pt 3):659–667

    PubMed  CAS  Google Scholar 

  • Sewry CA, Uziyel Y, Torelli S, Buchanan S, Sorokin L, Cohen J, Watt DJ (1998) Differential labelling of laminin alpha 2 in muscle and neural tissue of dy/dy mice: are there isoforms of the laminin alpha 2 chain? Neuropathol Appl Neurobiol 24:66–72

    Google Scholar 

  • Silberstein L, Webster SG, Travis M, Blau HM (1986) Developmental progression of myosin gene expression in cultured muscle cells. Cell 46:1075–1081

    Google Scholar 

  • Soukup T, Pedrosa-Domellöf F, Thornell L-E (1995) Expression of myosin heavy chain isoforms and myogenesis of intrafusal fibres in rat muscle spindles. Microsc Res Tech 30:390–407

    Article  PubMed  CAS  Google Scholar 

  • Soukup T, Pedrosa-Domellöf F, Thornell L-E (2003) Intrafusal fiber type composition of muscle spindles in the first human lumbrical muscle. Acta Neuropathol 105:18–24

    PubMed  CAS  Google Scholar 

  • Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW, Bridges CR, Shrager JB, Minugh-Purvis N, Mitchell MA (2004) Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428:415–418

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA (1979) The unlabeled antibody (PAP) method, introduction. J Histochem Cytochem 27:1657

    Article  PubMed  CAS  Google Scholar 

  • Thornell L-E, Eriksson P-O, Fischman DA, Grove BK, Butler-Browne GS, Virtanen I (1988) Human muscle spindle development. In: Hnik P, Soukup T, Vejsada R, Zelená J (eds) Mechanoreceptors development, structure and function. Plenum Press, New York, pp 39–44

    Google Scholar 

  • Thornell L-E, Grove B, Pedrosa F, Butler-Browne G, Dhoot G, Fischman D (1989) Expression of slow tonic myosin in muscle spindle fibres early in mammalian development. In: Stockdale F, Kedes I (eds) Molecular Biology of Muscle Development, Alan R Liss, New York, pp 471–480

  • Weiss A, Schiaffino S, Leinwand LA (1999) Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functioanl diversity. J Mol Biol 290:61–75

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs Inga Johansson for excellent technical assistance and associate professor Albert Crenshaw for English revision and valuable comments. This work was supported by grants from the Department of Odontology, Umeå University, Västerbotten County Council and the Swedish Dental Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharina Österlund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Österlund, C., Liu, JX., Thornell, LE. et al. Intrafusal myosin heavy chain expression of human masseter and biceps muscles at young age shows fundamental similarities but also marked differences. Histochem Cell Biol 139, 895–907 (2013). https://doi.org/10.1007/s00418-012-1072-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1072-7

Keywords

Navigation