Skip to main content

Advertisement

Log in

A novel method for quantified, superresolved, three-dimensional colocalisation of isotropic, fluorescent particles

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Colocalisation, the overlap of subcellular structures labelled with different colours, is a key step to characterise cellular phenotypes. We have developed a novel bioimage informatics approach for quantifying colocalisation of round, blob-like structures in two-colour, highly resolved, three-dimensional fluorescence microscopy datasets. First, the algorithm identifies isotropic fluorescent particles, of relative brightness compared to their immediate neighbourhood, in three dimensions and for each colour. The centroids of these spots are then determined, and each object in one location of a colour image is checked for a corresponding object in the other colour image. Three-dimensional distance maps between the centroids of differently coloured spots then display where and how closely they colocalise, while histograms allow to analyse all colocalisation distances. We use the method to reveal sparse colocalisation of different human leukocyte antigen receptors in choriocarcinoma cells. It can also be applied to other isotropic subcellular structures such as vesicles, aggresomes and chloroplasts. The simple, robust and fast approach yields superresolved, object-based colocalisation maps and provides a first indication of protein–protein interactions of fluorescent, isotropic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AU:

Arbitrary unit

DAPI:

4′,6-Diamidino-2-phenylindole

FRET:

Förster resonance energy transfer

GUI:

Graphical User Interface

HLA:

Human leukocyte antigen

LoG:

Laplace of Gaussian

MHC:

Major histocompatibility class

PMT:

Photomultiplier tube

PSF:

Point spread function

SNR:

Signal-to-noise ratio

LUT:

Look-up table

References

  • Anderson CM, Georgiou GN, Morrison IE, Stevenson GV, Cherry RJ (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci 101:415–425

    PubMed  Google Scholar 

  • Ayers GR, Dainty JC (1988) Iterative blind deconvolution method and its applications. Opt Lett 13:547

    Article  PubMed  CAS  Google Scholar 

  • Biggs D (2010) 3D deconvolution microscopy. Curr Protoc Cytom, Chapter 12: Unit 12.19.1–20

  • Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  PubMed  CAS  Google Scholar 

  • Clements CS, Kjer-Nielsen L, Kostenko L, Hoare HL, Dunstone MA, Moses E, Freed K, Brooks AG, Rossjohn J, McCluskey J (2005) Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc Natl Acad Sci USA 102(9):3360–3365

    Article  PubMed  CAS  Google Scholar 

  • Cooper J, Dealtry G, Ahmed MA, Arck P, Klapp B, Blois S, Fernández N (2007) An impaired breeding phenotype in mice with a genetic deletion of beta-2 microglobulin and diminished MHC class I expression: role in reproductive fitness. Biol Reprod 77:274–279

    Article  PubMed  CAS  Google Scholar 

  • Costes S, Daelemans D, Cho E, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein–protein colocalization in live cells. Biophys J 86:3993–4003

    Article  PubMed  CAS  Google Scholar 

  • Fernández N, Cooper J, Sprinks M, AbdElrahman M, Fiszer D, Kurpisz M, Dealtry G (1999) A critical review of the role of the major histocompatibility complex in fertilization, preimplantation development and feto-maternal interactions. Hum Reprod update 5:234–248

    Article  PubMed  Google Scholar 

  • Haralick R, Shapiro L (1992) Accuracy. Addison-Wesley Longman Publishing Co Inc., Chicago

    Google Scholar 

  • Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci USA 30(104(4)):17370–17375

    Article  Google Scholar 

  • Holmes T (1988) Maximum-likelihood image restoration adapted for noncoherent optical imaging. J Opt Soc Am A 5:666–673

    Article  CAS  Google Scholar 

  • Holmes TJ, Bhattacharyya S, Cooper JA, Hanzel D, Krishnamurthi V, Lin W, Roysam B, Szarowski DH, Turner JT (1995) Light Microscopic Images Reconstructed by Maximum Likelihood Deconvolution. In: Pawley J (ed) The handbook of biological confocal microscopy, 2nd edn. Plenum Press, New York, pp 389–402

    Google Scholar 

  • Holmes TJ, Biggs D, Abu-Tarif A (2006) Blind deconvolution. In: Pawley J (ed) Handbook of biological confocal microscopy. Springer Science+Business Media LLC, NY, pp 468–487

    Chapter  Google Scholar 

  • Ishitani A, Sageshima N, Lee N, Dorofeeva N, Hatake K, Marquardt H, Geraghty DE (2003) Protein expression and peptide binding suggest unique and interacting functional roles for HLA-E, F, and G in maternal-placental immune recognition. J Immunol 171(3):1376–1384

    PubMed  CAS  Google Scholar 

  • Jurisicova A, Casper RF, MacLusky NJ, Mills GB, Librach CL (1996) HLA-G expression during preimplantation human embryo development. Proc Natl Acad Sci USA 93:161–165

    Article  PubMed  CAS  Google Scholar 

  • Kozubek M, Matula P (2000) An efficient algorithm for measurement and correction of chromatic aberrations in fluorescence microscopy. J Microsc 200(Pt 3):206–217

    Google Scholar 

  • Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist 2(1–2):83–97

    Google Scholar 

  • Lachmanovich E, Shvartsman DE, Malka Y, Botvin C, Henis YI, Weiss AM (2003) Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J Microsc 212:122–131

    Article  PubMed  CAS  Google Scholar 

  • Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci USA 97:9461–9466

    Article  PubMed  CAS  Google Scholar 

  • Landmann L, Marbet P (2004) Colocalization analysis yields superior results after image restoration. Microsc Res Tech 64(2):103–112

    Article  PubMed  Google Scholar 

  • Li Q, Lau A, Morris T, Guo L, Fordyce C, Stanley E (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24:4070–4081

    Article  PubMed  CAS  Google Scholar 

  • Malkusch S, Endesfelder U, Mondry J, Gelléri M, Verveer P, Heilemann M (2012) Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem Cell Biol 137:1–10

    Article  PubMed  CAS  Google Scholar 

  • Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103(Pt 3):857–862

    PubMed  CAS  Google Scholar 

  • Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Model MA, Fang J, Yuvaraj P, Chen Y, Zhang Newby B-MM (2011) 3D deconvolution of spherically aberrated images using commercial software. J Microsc 241(1):94–100

    Article  PubMed  CAS  Google Scholar 

  • Morrison I, Karakikes I, Barber R, Fernández N, Cherry R (2003) Detecting and quantifying colocalization of cell surface molecules by single particle fluorescence imaging. Biophys J 85:4110–4121

    Article  PubMed  CAS  Google Scholar 

  • Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617–644

    Article  Google Scholar 

  • Obara B, Byun J, Fedorov D, Manjunath BS (2008) Automatic nuclei detection and dataflow in Bisquik system. Workshop on Bio-Image Informatics: Biological Imaging, Computer Vision and Data Mining. Santa Barbara

  • Pawley JB (2006) Points, pixels, and gray levels: digitizing image data. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer Science+Business Media LLC, NY, pp 59–79

    Chapter  Google Scholar 

  • Pertsinidis A, Zhang Y, Chu S (2010) Subnanometre single-molecule localization, registration and distance measurements. Nature 466:647–651

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7(6):418–419

    Article  PubMed  CAS  Google Scholar 

  • Press W, Flannery B, Teukolsky S, Vetterling W (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rasband WS (1997) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland

    Google Scholar 

  • Rouas-Freiss N, Gonçalves R, Menier C, Dausset J, Carosella E (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci 94:11520–11525

    Article  PubMed  CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White D, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  CAS  Google Scholar 

  • Schütz GJ, Trabesinger W, Schmidt T (1998) Direct observation of ligand colocalization on individual receptor molecules. Biophys J 74(5):2223–2226

    Article  PubMed  Google Scholar 

  • Shaikly VR, Morrison IE, Taranissi M, Noble CV, Withey AD, Cherry RJ, Blois SM, Fernández N (2008) Analysis of HLA-G in maternal plasma, follicular fluid, and preimplantation embryos reveal an asymmetric pattern of expression. J Immunol 180(6):4330–4337

    PubMed  CAS  Google Scholar 

  • Shaikly V, Shakhawat A, Withey A, Morrison I, Taranissi M, Dealtry G, Jabeen A, Cherry R, Fernández N (2010) Cell bio-imaging reveals co-expression of HLA-G and HLA-E in human preimplantation embryos. Reprod Biomed Online 20:223–233

    Article  PubMed  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. In: Proceedings of the IRE vol 37, pp 10–21

  • Sibarita JB (2005) Deconvolution microscopy. Adv Biochem Eng Biotechnol 95:201–243

    PubMed  Google Scholar 

  • Sprott JC (2003) Chaos and time-series analysis. Oxford University Press, Oxford

    Google Scholar 

  • Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41

    Article  PubMed  Google Scholar 

  • Thompson R, Larson D, Webb W (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  PubMed  CAS  Google Scholar 

  • Verveer PJ, Bastiaens PI (2008) Quantitative microscopy and systems biology: seeing the whole picture. Histochem Cell Biol 130(5):833–843

    Article  PubMed  CAS  Google Scholar 

  • Wolter S, Schüttpelz M, Tscherepanow M, Van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237:12–22

    Article  PubMed  CAS  Google Scholar 

  • Zinchuk V, Zinchuk O, Okada T (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 40:101–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the three anonymous reviewers for critical comments and pivotal suggestions, and J.A. Laissue, N. Kad and B. Amos for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boguslaw Obara or Pierre Philippe Laissue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (TIFF 6383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obara, B., Jabeen, A., Fernandez, N. et al. A novel method for quantified, superresolved, three-dimensional colocalisation of isotropic, fluorescent particles. Histochem Cell Biol 139, 391–402 (2013). https://doi.org/10.1007/s00418-012-1068-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1068-3

Keywords

Navigation