Skip to main content
Log in

3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Insights into the three-dimensional (3D) organization and function of intracellular structures at nanometer resolution, holds the key to our understanding of the molecular underpinnings of cellular structure−function. Besides this fundamental understanding of the cell at the molecular level, such insights hold great promise in identifying the disease processes by their altered molecular profiles, and help determine precise therapeutic treatments. To achieve this objective, previous studies have employed electron microscopy (EM) tomography with reasonable success. However, a major hurdle in the use of EM tomography is the tedious procedures involved in fixing, high-pressure freezing, staining, serial sectioning, imaging, and finally compiling the EM images to obtain a 3D profile of sub-cellular structures. In contrast, the resolution limit of EM tomography is several nanometers, as compared to just a single or even sub-nanometer using the atomic force microscope (AFM). Although AFM has been hugely successful in 3D imaging studies at nanometer resolution and in real time involving isolated live cellular and isolated organelles, it has had limited success in similar studies involving 3D imaging at nm resolution of intracellular structure–function in situ. In the current study, using both AFM and EM on aldehyde-fixed and semi-dry mouse pancreatic acinar cells, new insights on a number of intracellular structure–function relationships and interactions were achieved. Golgi complexes, some exhibiting vesicles in the process of budding were observed, and small vesicles were caught in the act of fusing with larger vesicles, possibly representing either secretory vesicle biogenesis or vesicle refilling following discharge, or both. These results demonstrate the power and scope of the combined engagement of EM and AFM imaging of fixed semi-dry cells, capable of providing a wealth of new information on cellular structure–function and interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Hamdah R, Cho WJ, Cho S-J, Jeremic A, Kelly M, Ilie AE, Jena BP (2004) Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol Int 28:7–17

    Article  PubMed  CAS  Google Scholar 

  • Abu-Hamdah R, Cho WJ, Hörber JKH, Jena BP (2006) Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: a study using photonic force microscopy. Ultramicroscopy 106:670–673

    Article  PubMed  CAS  Google Scholar 

  • Akey CW, Radermacher M (1993) Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J Cell Biol 122:1–19

    Article  PubMed  CAS  Google Scholar 

  • Allison DP, Doktyez MJ (2006) Cell secretion studies by force microscopy. J Cell Mol Med 10:847–856

    Article  PubMed  CAS  Google Scholar 

  • Anderson LL (2004) Discovery of a new cellular structure—the porosome: elucidation of the molecular mechanism of secretion. Cell Biol Int 28:3–5

    Article  PubMed  CAS  Google Scholar 

  • Anderson LL (2006a) Cell secretion—finally sees the light. J Cell Mol Med 10:270–272

    Article  Google Scholar 

  • Anderson LL (2006b) Discovery of the ‘porosome’; the universal secretory machinery in cells. J Cell Mol Med 10:126–131

    Article  PubMed  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain LH, Burgoyne RD, Gould GW (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 98:5619–5624

    Article  PubMed  CAS  Google Scholar 

  • Chen Z-H, Lee J-S, Shin L, Cho WJ, Jena BP (2010) Involvement of β-adrenergic receptor in synaptic vesicle swelling and implication in neurotransmitter release. J Cell Mol Med 15:572–576

    Article  Google Scholar 

  • Chen X, Walker AK, Strahler JR, Simon ES, Tomanicek-Volk SL, Nelson BB, Hurley MC, Ernst SA, Williams JA, Andrews PC (2006) Organellar proteomics. Mol Cell Proteomics 5(2):306–312

    PubMed  CAS  Google Scholar 

  • Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75:13–23

    PubMed  CAS  Google Scholar 

  • Cho S-J, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, Anderson LL (2002a) Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology 143:1144–1148

    Article  PubMed  CAS  Google Scholar 

  • Cho S-J, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, Jena BP (2002b) Structure and dynamics of the fusion pore in live cells. Cell Biol Int 26:35–42

    Article  PubMed  CAS  Google Scholar 

  • Cho S-J, Sattar AK, Jeong EH, Satchi M, Cho J, Dash S, Mayes MS, Stromer MH, Jena BP (2002c) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci USA 99:4720–4724

    Article  PubMed  CAS  Google Scholar 

  • Cho S-J, Kelly M, Rognlien KT, Cho JA, Horber JKH, Jena BP (2002d) SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys J 83:2522–2527

    Article  PubMed  CAS  Google Scholar 

  • Cho WJ, Jeremic A, Jena BP (2005a) Direct interaction between SNAP-23 and L-type calcium channel. J Cell Mol Med 9:380–386

    Article  PubMed  CAS  Google Scholar 

  • Cho WJ, Jeremic A, Jena BP (2005b) Size of supramolecular SNARE complex: membrane-directed self-assembly. J Am Chem Soc 127:10156–10157

    Article  PubMed  CAS  Google Scholar 

  • Cho WJ, Jeremic A, Rognlien KT, Zhvania MG, Lazrishvili I, Tamar B, Jena BP (2004) Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol Int 28:699–708

    Article  PubMed  CAS  Google Scholar 

  • Cho WJ, Jeremic A, Jin H, Ren G, Jena BP (2007) Neuronal fusion pore assembly requires membrane cholesterol. Cell Biol Int 31:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Cho WJ, Ren G, Jena BP (2008) EM 3D contour maps provide protein assembly at the nanoscale within the neuronal porosome complex. J Microscopy 232:106–111

    Article  CAS  Google Scholar 

  • Cho WJ, Shin L, Ren G, Jena BP (2009) Structure of membrane-associated neuronal SNARE complex: implication in neurotransmitter release. J Cell Mol Med 13:4161–4165

    Article  PubMed  CAS  Google Scholar 

  • Cho WJ, Lee J-S, Ren G, Zhang L, Shin L, Manke CW, Potoff J, Kotaria N, Zhvania MG, Jena BP (2011) Membrane-directed molecular assembly of the neuronal SNARE complex. J Cell Mol Med 15:31–37

    Article  PubMed  CAS  Google Scholar 

  • Cook JD, Cho WJ, Stemmler TL, Jena BP (2008) Circular dichroism (CD) spectroscopy of the assembly and disassembly of SNAREs: the proteins involved in membrane fusion in cells. Chem Phys Lett 462:6–9

    Article  PubMed  CAS  Google Scholar 

  • Craciun C (2004) Elucidation of cell secretion: pancreas led the way. Pancreatology 4:487–489

    Article  PubMed  Google Scholar 

  • Drescher DG, Cho WJ, Drescher MJ (2011) Identification of the porosome complex in the hair cell. Cell Biol Int Rep

  • Elshennawy WW (2011) Image processing and numerical analysis approaches of porosome in mammalian pancreatic acinar cell. J Am Sci 7:835–843

    Google Scholar 

  • Evans LL, Lee AJ, Bridgman PC, Mooseker MS (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci 111:2055–2066

    PubMed  CAS  Google Scholar 

  • Folprecht G, Schneider S, Oberleithner H (1996) Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy. Pfluegers Arch 432:831–838

    Article  CAS  Google Scholar 

  • Hammel I, Lagunoff D, Wysolmerski R (1993) Theoretical considerations on the formation of secretory granules in the rat pancreas. Exp Cell Res 204:1–5

    Article  PubMed  CAS  Google Scholar 

  • Hamon L, Curmi PA, Pastré D (2010) High-resolution imaging of microtubules and cytoskeleton structures by atomic force microscopy. Methods Cell Biol 95:157–174

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J (1998) Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 143:1485–1503

    Article  PubMed  CAS  Google Scholar 

  • Holden C (1997) Early peek at a cellular porthole. Science 275:485

    Article  Google Scholar 

  • Hörber JKH, Miles MJ (2003) Scanning probe evolution in biology. Science 302:1002–1005

    Article  PubMed  Google Scholar 

  • Jeftinija S (2006) The story of cell secretion: events leading to the discovery of the ‘porosome’—the universal secretory machinery in cells. J Cell Mol Med 10:273–279

    Article  PubMed  CAS  Google Scholar 

  • Jena BP (2012) NanoCellBiology of secretion: imaging its cellular and molecular underpinnings. Springer Briefs Biol Imaging 1:1–70

    Article  Google Scholar 

  • Jena BP, Gumkowski FD, Konieczko EM, Von Mollard GF, Jahn R, Jamieson JD (1994) Redistribution of a Rab3-like GTP binding protein from secretory granules to the Golgi complex in pancreatic acinar cells during regulated exocytosis. J Cell Biol 124:43–53

    Article  PubMed  CAS  Google Scholar 

  • Jena BP, Cho S-J, Jeremic A, Stromer MH, Abu-Hamdah R (2003) Structure and composition of the fusion pore. Biophys J 84:1337–1343

    Article  PubMed  CAS  Google Scholar 

  • Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC (1997a) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci USA 94:13317–13322

    Article  PubMed  CAS  Google Scholar 

  • Jena BP, Hoerber JKH (2006) Force microscopy: application in biology and medicine. Wiley, New York, pp vii–viii

  • Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC (1997b) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci USA 94:13317–13322

    Article  PubMed  CAS  Google Scholar 

  • Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC (1997c) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci USA 94:13317–13322

    Article  PubMed  CAS  Google Scholar 

  • Jeong EH, Webster P, Khuong CQ, Sattar AKMA, Satchi M, Jena BP (1999) The native membrane fusion machinery in cells. Cell Biol Int 22:657–670

    Article  Google Scholar 

  • Jeremic A, Kelly M, Cho S-J, Stromer MH, Jena BP (2003) Reconstituted fusion pore. Biophys J 85:2035–2043

    Article  PubMed  CAS  Google Scholar 

  • Jeremic A, Cho WJ, Jena BP (2005) Involvement of water channels in synaptic vesicle swelling. Exp Biol Med 230:674–680

    CAS  Google Scholar 

  • Jeremic A, Quinn AS, Cho WJ, Taatjes DJ, Jena BP (2006) Energy-dependent disassembly of self-assembled SNARE complex: observation at nanometer resolution using atomic force microscopy. J Am Chem Soc 128:26–27

    Article  PubMed  CAS  Google Scholar 

  • Jeremic A (2008) Cell secretion: an update. J Cell Mol Med 12:1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP (2004) Vesicle swelling regulates content expulsion during secretion. Cell Biol Int 28:709–716

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Langford GM, Weiss DG (1992) Actin-dependent organelle movement in squid axoplasm. Nature 356:722–725

    Article  PubMed  CAS  Google Scholar 

  • Labhasetwar V (2007) A milestone in science: discovery of the porosome—the universal secretory machinery in cells. J Biomed Nanotechnol 3:1

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leabu M (2006) Discovery of the molecular machinery and mechanisms of membrane fusion in cells. J Cell Mol Med 10:423–427

    Article  PubMed  CAS  Google Scholar 

  • Lee J-S, Mayes MS, Stromer MH, Scanes CG, Jeftinija S, Anderson LL (2004) Number of secretory vesicles in GH cells of the pituitary remains unchanged after secretion. Exp Biol Med 229:632–639

    CAS  Google Scholar 

  • Lee J-S, Cho WJ, Jeftinija K, Jeftinija S, Jena BP (2009) Porosome in astrocytes. J Cell Mol Med 13:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lee J-S, Cho WJ, Shin L, Jena BP (2010) Involvement of cholesterol in synaptic vesicle swelling. Exp Biol Med 235:470–477

    Article  CAS  Google Scholar 

  • Lew S, Hammel I, Galli SJ (1994) Cytoplasmic granule formation in mouse pancreatic acinar cells. Evidence for formation of immature granules (condensing vacuoles) by aggregation and fusion of progranules of unit size, and for reductions in membrane surface area and immature granule volume during granule maturation. Cell Tissue Res 278:327–336

    Article  PubMed  CAS  Google Scholar 

  • Manneville J-B, Etienne-Manneville S, Skehel P, Carter T, Ogden D, Ferenczi M (2003) Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells. J Cell Sci 116:3927–3938

    Article  PubMed  CAS  Google Scholar 

  • Matsuno A, Itoh J, Mizutani A, Takekoshi S, Osamura RY, Okinaga H, Ide F, Miyawaki S, Uno T, Asano S, Tanaka J, Nakaguchi H, Sasaki M, Murakami M (2008) Co-transfection of EYFP-GH and ECFP-rab3B in an experimental pituitary GH3 cell: a role of rab3B in secretion of GH through porosome. Folia Histochem Cytobiol 46:419–421

    Article  PubMed  CAS  Google Scholar 

  • Mohrmann R, de Wit H, Verhage M, Neher E, Sørensen JB (2010) Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–505

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Brinckmann E, Schwab A, Krohne G (1994) Imaging nuclear pores of aldosterone-sensitive kidney cells by atomic force microscopy. Proc Natl Acad Sci USA 91:9784–9788

    Article  PubMed  CAS  Google Scholar 

  • Ohnesorge F, Binnig G (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Okuneva VG, Japaridze ND, Kotaria NT, Zhvania MG (2012) Neuronal porosome in the rat and cat brain: electron microscopic study. Cell Tissue Biol 6:69–72

    Google Scholar 

  • Paknikar KM (2007) Landmark discoveries in intracellular transport and secretion. J Cell Mol Med 11:393–397

    Article  PubMed  CAS  Google Scholar 

  • Paknikar KM, Jeremic A (2007) Discovery of the cell secretion machinery. J Biomed Nanotechnol 3:218–222

    Article  CAS  Google Scholar 

  • Perez-Terzic C, Pyle J, Jaconi M, Stehno-Bittel L, Clapham DE (1996) Conformational states of the nuclear pore complex induced by depletion of nuclear calcium stores. Science 273:1875–1877

    Article  PubMed  CAS  Google Scholar 

  • Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA (2000) Class V myosins. Biochim Biophys Acta 1496:36–51

    Article  PubMed  CAS  Google Scholar 

  • Rudolf R, Salm T, Rustom A, Gerdes H-H (2001) Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 12:1353–1365

    PubMed  CAS  Google Scholar 

  • Rudolf R, Kögel T, Kuznetsov SA, Salm T, Sclicker O, Hellwig A, Hammer JA III, Gerdes H-H (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116:1339–12348

    Article  PubMed  CAS  Google Scholar 

  • Savigny P, Evans J, McGarth KM (2007) Cell membrane structures during exocytosis. Endocrinology 148:3863–3874

    Article  PubMed  CAS  Google Scholar 

  • Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci USA 94:316–321

    Article  PubMed  CAS  Google Scholar 

  • Schroer TA, Sheetz MP (1991) Functions of microtubule-based motors. Annu Rev Physiol 53:629–652

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Shen Q-T, Kiel A, Wang J, Wang H-W, Melia TJ, Rothman JE, Pincet F (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Shin L, Basi N, Lee J-S, Cho WJ, Chen Z, Abu-Hamdah R, Oupicky D, Jena BP (2010a) Involvement of vH + -ATPase in synaptic vesicle swelling. J Neurosci Res 88:95–101

    Article  PubMed  CAS  Google Scholar 

  • Shin L, Cho WJ, Cook J, Stemmler T, Jena BP (2010b) Membrane lipids influence protein complex assembly–disassembly. J Am Chem Soc 132:5596–5597

    Article  PubMed  CAS  Google Scholar 

  • Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S (2007) Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27:6868–6877

    Article  PubMed  CAS  Google Scholar 

  • Singer MV (2004) Legacy of a distinguished scientist: George E Palade. Pancreatology 3:518–519

    Article  Google Scholar 

  • Stehno-Bittel L, Perez-Terzic C, Clapham DE (1995) Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270:1835–1838

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Scheneck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  • Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16:2670–2680

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Shi H, Guo K, Ng CP, Li J, Gan BQ, Chien Liew H, Leinonen J, Rajaniemi H, Zhou ZH, Zeng Q, Hong W (2007) VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol Biol Cell 18:1056–1063

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Abramovici A, Amichai D, Eldar T, Ben-Dor L, Pentchev PG, Hammel I (1992) Morphometric studies of pancreatic acinar granule formation in NCTR-Balb/c mice. J Cell Sci 102:141–147

    PubMed  Google Scholar 

  • Weng N, Thomas DD, Groblewski GE (2007) Pancreatic acinar cells express vesicle-associated membrane protein 2- and 8-specific populations of zymogen granules with distinct and overlapping roles in secretion. J Biol Chem 282:9635–9645

    Article  PubMed  CAS  Google Scholar 

  • Wheatley DN (2004) A new frontier in cell biology: nano cell biology. Cell Biol Int 28:1–2

    Article  PubMed  CAS  Google Scholar 

  • Wheatley DN (2007) Pores for thought: further landmarks in the elucidation of the mechanism of secretion. Cell Biol Int 31:1297–1300

    Article  PubMed  Google Scholar 

  • Zhao D, Lulevich V, Liu F, Liu G (2010) Applications of atomic force microscopy in biophysical chemistry. J Phys Chem B 114:5971–5982

    Article  Google Scholar 

Download references

Acknowledgments

Supported by grants from NIH and NSF (BPJ), WSU startup (XC), and NSF MRI grants (GM). The authors declare no competing financial interests or conflicts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas J. Taatjes or Bhanu P. Jena.

Additional information

S. Wang and J-S. Lee contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Lee, JS., Bishop, N. et al. 3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex. Histochem Cell Biol 137, 703–718 (2012). https://doi.org/10.1007/s00418-012-0948-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0948-x

Keywords

Navigation