Skip to main content

Advertisement

Log in

Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy

  • Original Article
  • Transport processes, metabolism and endocrinology; kidney gastrointenstinal tract, and exocrine glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Nuclear pore complexes (NPC), located in the nuclear envelope, functionally connect the cell nucleus with the cytoplasm and serve as a crucial pathway for macromolecule exchange. A Madin-Darby canine kidney (MDCK) clone that resembles principal cells of the collecting duct was shown recently to respond to sustained aldosterone exposure with a significant increase in the NPC number per nucleus. The present study elucidates the molecular nature of the NPC pathway and its regulation by aldosterone applying atomic force microscopy. We imaged individual NPC in situ and searched for a putative so-called transporter in the NPC centre. In aldos-terone-depleted cells we found numerous macromolecules docked to individual NPC waiting for translocation into the nucleoplasm (standby mode=inactive pore). In contrast, in aldosterone-treated cells NPC were frequently found free of macromolecules, indicating that the translocation process kept pace with docking under hormone-stimulated conditions (transport mode=active pore). In the NPC centre we detected a ring-like structure with a central invagination. We assume that the ring is the putative transporter and that the invagination is the channel entrance used for translocation of macromolecules. Transporters were found in open and closed configurations. In conclusion, the results provide evidence for the existence of a nuclear transporter as part of the translocation machinery of an individual NPC. Aldosterone increases the activity of the nuclear transporter and thus facilitates steroid-mediated gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebi U, Pante N, Jarnik M (1992) Structure and function of the nucleare pore complex, a supramolecular machine mediating molecular trafficking across the nuclear envelope. Verh Dtsch Zool Ges 85:285–296

    Google Scholar 

  2. Akey CW (1990) Visualization of transport-related configurations of the nuclear pore transporter. Biophys J 58:341–355

    Article  PubMed  CAS  Google Scholar 

  3. Akey CW, Radermacher M (1993) Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryoelectron microscopy. J Cell Biol 122:1–19

    Article  PubMed  CAS  Google Scholar 

  4. Binnig G, Quate C (1986) Atomic force microscope. Phys Rev Lett 56:930–934

    Article  PubMed  Google Scholar 

  5. Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci USA 82:8527–8529

    Article  PubMed  CAS  Google Scholar 

  6. Braunstein D, Spudich A (1994) Structure and activation dynamics of RBL-2H3 cells observed with scanning force microscopy. Biophys J 66:1717–1725

    Article  PubMed  CAS  Google Scholar 

  7. Bustamante JO (1994) Nuclear electrophysiology. J Membr Biol 138:105–112

    PubMed  CAS  Google Scholar 

  8. Bustamante J, Liepins A, Hanover JA (1995) The nuclear pore ion channel activity. J Membr Biol 146:239–251

    PubMed  CAS  Google Scholar 

  9. Carmo-Fonseca M, David-Ferreira JF (1981) Quantitative study of nuclear pore complex in ventral prostate isolated nuclei from intact and castrated rats. J Ultrastruct Res 76:202–214

    Article  PubMed  CAS  Google Scholar 

  10. Coleman SE, Duggan J, Hackett RL (1976) Freeze-fracture study of changes in nuclei isolated from ischemic rat kidney. Tissue Cell 6:521–534

    Article  Google Scholar 

  11. Davis LI, Blobel G (1987) Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci USA 84:7552–7556

    Article  PubMed  CAS  Google Scholar 

  12. Dingwall C, Laskey RA (1986) Protein import into the cell nucleus. Annu Rev Cell Biol 2:367–391

    Article  PubMed  CAS  Google Scholar 

  13. Feldherr CM, Akin D (1990) The permeability of the nuclear envelope in dividing and nondividing cell culture. J Cell Biol 111:1–8

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Segura LM, Lafarga M, Berciano MT, Hernandez P, Andres MA (1989) Distribution of nuclear pores and chromatin organization in neurons and glial cells of the rat cerebellar cortex. J Comp Neurol 290:440–450

    Article  PubMed  CAS  Google Scholar 

  15. Gekle M, Wünsch S, Oberleithner H, Silbernagl S (1994) Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflügers Arch 428:157–162

    Article  PubMed  CAS  Google Scholar 

  16. Goldie KN, Pante N, Engel A, Aebi U (1994) Exploring native nuclear pore complex structure and conformation by scanning force microscopy in physiological buffers. J Vac Sci Technol B 12:1482–1485

    Article  CAS  Google Scholar 

  17. Hinshaw JE, Carragher BO, Milligan RA (1992) Architecture and design of the nuclear pore complex. Cell 69:1133–1141

    Article  PubMed  CAS  Google Scholar 

  18. Hoh JH, Hansma PK (1992) Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell Biol 2:208–213

    Article  PubMed  CAS  Google Scholar 

  19. Huang S, Spector DL (1991) Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors. Genes Dev 5:2288–2302

    Article  PubMed  CAS  Google Scholar 

  20. Jarnik M, Aebi U (1991) Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol 107:291–308

    Article  PubMed  CAS  Google Scholar 

  21. Lal R, John SA (1994) Biological applications of atomic microscopy. Am J Physiol 266:C1-C21

    PubMed  CAS  Google Scholar 

  22. Matzke AJM, Matzke MA (1991) The electrical properties of the nuclear envelope, and their possible role in the regulation of eukaryotic gene expression. Bioelectrochem Bioenerg 25:357–370

    Article  Google Scholar 

  23. Miller M, Park MK, Hanover JA (1991) Nuclear pore complex: structure, function, and regulation. Physiol Rev 71:909–949

    PubMed  CAS  Google Scholar 

  24. Newmeyer DD, Forbes DJ (1988) Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52:641–653

    Article  PubMed  CAS  Google Scholar 

  25. Oberleithner H (1991) Acute aldosterone action in renal target cells. Cell Physiol Biochem 1:2–12

    Article  CAS  Google Scholar 

  26. Oberleithner H, Brinckmann E, Schwab A, Krohne G (1994) Imaging nuclear pores of aldosterone sensitive kidney cells by atomic force microscopy. Proc Natl Acad Sci USA 91:9784–9788

    Article  PubMed  CAS  Google Scholar 

  27. Oberleithner H, Brinckmann E, Giebisch G, Geibel J (1995) Visualizing life on biomembranes by atomic force microscopy. Kidney Int 48:923–929

    Article  PubMed  CAS  Google Scholar 

  28. Ortiz HE, Cavicchia JC (1990) Androgen-induced changes in nuclear pore number and in tight junctions in rat seminal vesicle epithelium. Anat Rec 226:129–134

    Article  PubMed  CAS  Google Scholar 

  29. Pante N, Aebi U (1993) The nuclear pore complex. J Cell Biol 122:977–984

    Article  PubMed  CAS  Google Scholar 

  30. Pante N, Aebi U (1994) Towards understanding the three-dimensional structure of the nuclear pore complex at the molecular level. Curr Opin Struct Biol 4:187–196

    Article  CAS  Google Scholar 

  31. Pfeifer K, Weiler BE, Ugarkovic D, Bachmann M, Schröder HC, Müller WEG (1991) Evidence for a direct interaction of Rev protein with nuclear envelope mRNA-translocation system. Eur J Biochem 199:53–64

    Article  PubMed  CAS  Google Scholar 

  32. Radmacher M, Tillmann RW, Fritz M, Gaub HE (1992) From molecules to cells: imaging soft samples with the atomic force microscope. Science 257:1900–1905

    Article  PubMed  CAS  Google Scholar 

  33. Richardson WD, Mills AD, Dilworth SM, Laskey RA, Ding-wall C (1988) Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell 52:655–664

    Article  PubMed  CAS  Google Scholar 

  34. Rubins JB, Benditt JO, Dickey BF, Riedel N (1990) GTP-binding protein in rat liver nuclear envelopes. Proc Natl Acad Sci USA 87:7080–7084

    Article  PubMed  CAS  Google Scholar 

  35. Schindler M, Jiang L-W(1987) Epidermal growth factor and insulin stimulate nuclear pore-mediated macromolecular transport in isolated rat liver nuclei. J Cell Biol 104:849–853

    Article  PubMed  CAS  Google Scholar 

  36. Schneider S, Folprecht G, Krohne G, Oberleithner H (1995) Immunolocalization of lamins and nuclear pore complex proteins by atomic force microscopy. Pflügers Arch 430:795–801

    Article  PubMed  CAS  Google Scholar 

  37. Schröder HC, Wenger R, Ugarkovic D, Friese K, Bachmann, Müller WEG (1990) Differential effect of insulin and epidermal growth factor on the mRNA translocations system and transport of specific poly(A+) mRNA and poly(A) mRNA in isolated nuclei. Biochem 29:2368–2378

    Article  Google Scholar 

  38. Seydel U, Gerace L (1991) A 28000-Da GDP/GTP-binding protein specific to the nuclear envelope. J Biol Chem 266:7602–7608

    PubMed  CAS  Google Scholar 

  39. Soler AP, Smith RM, Jarett L (1992) Insulin stimulates accumulation and efflux of macromolecules in isolated nuclei from H35 hepatoma cells. Diabetes 41:194–201

    Article  PubMed  CAS  Google Scholar 

  40. Sugie S, Yoshimi Y, Tanaka T, Mori H, Williams GM (1994) Alterations of nuclear pores in preneoplastic and neoplastic rat liver lesions induced by 2-acetylaminofluorene. Carcinogenesis 15:95–98

    Article  PubMed  CAS  Google Scholar 

  41. Verrey F, Schaerer E, Zoerkler P, Paccolat MP, Geering K, Kraehenbuhl JP, Rossier BC (1987) Regulation by aldosterone of NA+, K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J Cell Biol 104:1231–1237

    Article  PubMed  CAS  Google Scholar 

  42. Wünsch S, Gekle M, Kersting U, Schuricht B, Oberleithner H (1995) Phenotypically and karyotypically distinct Madin-Dar-by canine kidney cell clones respond differently to alkaline stress. J Cell Physiol 164:164–171

    Article  PubMed  Google Scholar 

  43. Ying Y, Johnson CV, Dobner PR, Lawrence JB (1993) Higher level organization of individual gene transcription and RNA splicing. Science 259:1326–1330

    Article  Google Scholar 

  44. Yang J (1993) New approach for atomic force microscopy of membrane proteins. J Mol Biol 229:286–290

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folprecht, G., Schneider, S. & Oberleithner, H. Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy. Pflügers Arch. 432, 831–838 (1996). https://doi.org/10.1007/s004240050205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050205

Keywords

Navigation