Skip to main content

Advertisement

Log in

Human periodontal ligament fibroblasts are the optimal cell source for induced pluripotent stem cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Among the various kinds of fibroblasts existing in the human body, the periodontal ligament (PDL) fibroblasts have been suggested as multipotent cells. Periodontal ligament fibroblasts are characterized by rapid turnover, a high remodeling capacity and remarkable capacity for renewal and repair. They also differentiate into osteoblasts and cementoblasts. We established iPS cells from human PDL fibroblasts by introducing the ES cell markers Oct3/4, Sox2, Nanog, Klf4 and Lin28 by retrovirus transduction, even without the oncogene c-Myc. The iPS cells established in this study expressed the ES cell markers and formed teratomas in SCID mice. The c-Myc expression level in the PDL fibroblasts was higher than that in the iPS cells by quantitative RT-PCR. Therefore, we have concluded that PDL fibroblasts could be an optimal cell source for iPS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PDL:

Periodontal ligament

HPDLF:

Human periodontal ligament fibroblasts

iPS cell:

Induced pluripotent stem cell

ES cell:

Embryonic stem cell

ALP:

Alkaline phosphatase

HPDL-iPS:

iPS cell derived from a HPDLF

References

  • Arai C, Ohnuki Y, Umeki D, Saeki Y (2005) Effects of bite-opening and cyclosporin A on the mRNA levels of myosin heavy chain and the muscle mass in rat masseter. Jpn J Physiol 55(3):173–179

    Article  PubMed  CAS  Google Scholar 

  • Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M et al (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450(7173):1230–1234

    Article  PubMed  CAS  Google Scholar 

  • Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M et al (2010) Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One 5(9):e12743

    Article  PubMed  Google Scholar 

  • Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3(5):519–532

    Article  PubMed  CAS  Google Scholar 

  • Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41(9):968–976

    Article  PubMed  CAS  Google Scholar 

  • Fickert S, Schröter-Bobsin U, Gross AF, Hempel U, Wojciechowski C, Rentsch C et al (2011) Human mesenchymal stem cell proliferation and osteogenic differentiation during long-term ex vivo cultivation is not age dependent. J Bone Miner Metab 29(2):224–235

    Article  PubMed  Google Scholar 

  • Findlay D, Chehade M, Tsangari H, Neale S, Hay S, Hopwood B et al (2008) Circulating RANKL is inversely related to RANKL mRNA levels in bone in osteoarthritic males. Arthritis Res Ther 10(1):R2

    Article  PubMed  Google Scholar 

  • Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC (2010) Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5(2):e8975

    Article  PubMed  Google Scholar 

  • Hatano SY, Tada M, Kimura H, Yamaguchi S, Kono T, Nakano T et al (2005) Pluripotential competence of cells associated with Nanog activity. Mech Dev 122(1):67–79

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS (2009) Plasticity of stem cells derived from adult periodontal ligament. Regen Med 4(6):809–821

    Article  PubMed  Google Scholar 

  • Lallier TE, Spencer A (2007) Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation. Cell Tissue Res 327(1):93–109

    Article  PubMed  CAS  Google Scholar 

  • Lallier TE, Spencer A, Fowler MM (2005) Transcript profiling of periodontal fibroblasts and osteoblasts. J Periodontol 76(7):1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Lekic P, Rojas J, Birek C, Tenenbaum H, McCulloch CA (2001) Phenotypic comparison of periodontal ligament cells in vivo and in vitro. J Periodontal Res 36(2):71–79

    Article  PubMed  CAS  Google Scholar 

  • Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M et al (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460(7259):1136–1139

    Article  PubMed  CAS  Google Scholar 

  • Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3(3):340–345

    Article  PubMed  CAS  Google Scholar 

  • Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153

    Article  PubMed  Google Scholar 

  • McCulloch CA, Bordin S (1991) Role of fibroblast subpopulations in periodontal physiology and pathology. J Periodontal Res 26(3 Pt 1):144–154

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745

    Article  PubMed  CAS  Google Scholar 

  • Morsczeck C (2006) Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int 78(2):98–102

    Article  PubMed  CAS  Google Scholar 

  • Müller LU, Daley GQ, Williams DA (2009) Upping the ante: recent advances in direct reprogramming. Mol Ther 17(6):947–953

    Article  PubMed  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Nomura Y, Arai C, Noda K, Oikawa T, Kogure K et al (2007) Laser capture microdissection of rat periodontal ligament for gene analysis. Biotech Histochem 82(6):295–300

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Noda K, Shimoda S, Oikawa T, Arai C, Nomura Y et al (2008) Time-lapse observation of rat periodontal ligament during function and tooth movement, using microcomputed tomography. Eur J Orthod 30(3):320–326

    Article  PubMed  Google Scholar 

  • Noda K, Nakamura Y, Kogure K, Nomura Y (2009) Morphological changes in the rat periodontal ligament and its vascularity after experimental tooth movement using superelastic forces. Eur J Orthod 31(1):37–45

    Article  PubMed  Google Scholar 

  • Oda Y, Yoshimura Y, Ohnishi H, Tadokoro M, Katsube Y, Sasao M et al (2010) Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 285(38):29270–29278

    Article  PubMed  CAS  Google Scholar 

  • Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315

    Article  PubMed  CAS  Google Scholar 

  • Pacini S, Carnicelli V, Trombi L, Montali M, Fazzi R, Lazzarini E et al (2010) Constitutive expression of pluripotency-associated genes in mesodermal progenitor cells (MPCs). PLoS One 5(3):e9861

    Article  PubMed  Google Scholar 

  • Perera KA, Tonge CH (1981) Fibroblast cell proliferation in the mouse molar periodontal ligament. J Anat 133(Pt 1):77–90

    PubMed  CAS  Google Scholar 

  • Roberts WE, Mozsary PG, Klingler E (1982) Nuclear size as a cell-kinetic marker for osteoblast differentiation. Am J Anat 165(4):373–384

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24(20):2239–2263

    Article  PubMed  CAS  Google Scholar 

  • Sun N, Longaker MT, Wu JC (2010) Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle 9(5):880–885

    Article  PubMed  CAS  Google Scholar 

  • Swijnenburg RJ, Schrepfer S, Cao F, Pearl JI, Xie X, Connolly AJ et al (2008) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17(6):1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki N, Takahashi K, Tanaka T, Ichisaka T, Aoki H, Takeda-Kawaguchi T et al (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89(8):773–778

    Article  PubMed  CAS  Google Scholar 

  • Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, Akamine A (2008) Development of a multipotent clonal human periodontal ligament cell line. Differentiation 76(4):337–347

    Article  PubMed  CAS  Google Scholar 

  • Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46(4):438–447

    Article  PubMed  CAS  Google Scholar 

  • Wataya T, Ando S, Muguruma K, Ikeda H, Watanabe K, Eiraku M et al (2008) Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci 105(33):11796–11801

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Tomoeda M, Ozawa Y, Yoneda S, Terashima Y, Ikezawa K et al (2007) PLAP-1/asporin, a novel negative regulator of periodontal ligament mineralization. J Biol Chem 282(32):23070–23080

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460(7251):49–52

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480

    Article  PubMed  CAS  Google Scholar 

  • Yasuda E, Seki Y, Higuchi T, Nakashima F, Noda T, Kurosawa H (2009) Development of cystic embryoid bodies with visceral yolk-sac-like structures from mouse embryonic stem cells using low-adherence 96-well plate. J Biosci Bioeng 107(4):442–446

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Nomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, Y., Ishikawa, M., Yashiro, Y. et al. Human periodontal ligament fibroblasts are the optimal cell source for induced pluripotent stem cells. Histochem Cell Biol 137, 719–732 (2012). https://doi.org/10.1007/s00418-012-0923-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0923-6

Keywords

Navigation