Skip to main content

Advertisement

Log in

Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Periodontal regeneration requires the coordinated movement and differentiation of several cell types in order to re-establish the cementum, periodontal ligament (PDL), and alveolar bone. Cells in culture are often used as model systems for mature tissues, although they may represent expanded progenitor cell populations. Comparison of transcript expression between fresh PDL tissue and PDL cell isolates by MicroArray analysis has revealed numerous molecular differences. Several transcripts (including alkaline phosphatase, bone sialoprotein, periostin, and fibromodulin) are expressed at higher levels in fresh PDL than in cultured PDL cells. In contrast, PDL cells in culture selectively express a variety of growth factors. Several of these growth factors alter PDL fibroblast behavior. Two members of the transforming growth factor β family of growth factors, namely, bone morphogenic protein-7 (BMP7) and growth differentiation factor-5 (GDF5), reduce cell proliferation and Stro-1 expression (a bone marrow stromal stem cell marker), whereas only BMP7 induces alkaline phosphatase activity. In contrast, fibroblast growth factor-5 induces enhanced cell proliferation and Stro-1 expression, while repressing alkaline phosphatase activity. The stimulation of PDL cells to differentiate (either by BMP7 or GDF5) inhibits cell motility. Thus, PDL cells in culture are regulated by several factors that differentially stimulate a mineralized (cementoblast-like) fate, a non-mineralized fate (mature fibroblasts), or the propagation of a more naive phenotype (potential progenitors).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asano M, Kubota S, Nakanishi T, Nishida T, Yamaai T, Yosimichi G, Ohyama K, Sugimoto T, Murayama Y, Takigawa M (2005) Effect of connective tissue growth factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-derived cells. Cell Commun Signal 3:11

    Article  PubMed  CAS  Google Scholar 

  • Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S (2003) Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82:976–981

    PubMed  CAS  Google Scholar 

  • Beertsen W, Everts V (1990) Formation of acellular root cementum in relation to dental and non-dental hard tissues in the rat. J Dent Res 69:1669–1673

    PubMed  CAS  Google Scholar 

  • Beertsen W, Bos T van den, Niehof A, Everts V (1998) Formation of reparative acellular extrinsic fiber cementum in relation to implant materials installed in rat periodontium. Eur J Oral Sci 106 (Suppl 1):368–375

    PubMed  CAS  Google Scholar 

  • Behets C, Williams JM, Chappard D, Devogelaer JP, Manicourt DH (2004) Effects of calcitonin on subchondral trabecular bone changes and on osteoarthritic cartilage lesions after acute anterior cruciate ligament deficiency. J Bone Miner Res 19:1821–1826

    Article  PubMed  CAS  Google Scholar 

  • Bernick S, Paule W, Ertl D, Nishimoto SK, Nimni ME (1989) Cellular events associated with the induction of bone by demineralized bone. J Orthop Res 7:1–11

    Article  PubMed  CAS  Google Scholar 

  • Berry JE, Zhao M, Jin Q, Foster BL, Viswanathan H, Somerman MJ (2003) Exploring the origins of cementoblasts and their trigger factors. Connect Tissue Res 44 (Suppl 1):97–102

    PubMed  CAS  Google Scholar 

  • Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287:98–105

    Article  PubMed  CAS  Google Scholar 

  • Bonson S, Jeansonne BG, Lallier TE (2004) Root-end filling materials alter fibroblast differentiation. J Dent Res 83:408–413

    PubMed  CAS  Google Scholar 

  • Byers RJ, Brown J, Brandwood C, Wood P, Staley W, Hainey L, Freemont AJ, Hoyland JA (1999) Osteoblastic differentiation and mRNA analysis of STRO-1-positive human bone marrow stromal cells using primary in vitro culture and poly (A) PCR. J Pathol 187:374–381

    Article  PubMed  CAS  Google Scholar 

  • Caton J, Greenstein G, Zappa U (1992) Guided tissue regeneration using Vicryl periodontal mesh. Compendium 13:202–208

    PubMed  CAS  Google Scholar 

  • Chang AC, Reddel RR (1998) Identification of a second stanniocalcin cDNA in mouse and human: stanniocalcin 2. Mol Cell Endocrinol 141:95–99

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Chuang H, Chen YR, Yang LC, Chen JK, Mardini S, Chung HY, Lu YL, Ma WC, Lou J (2004) Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J Surg Res 119:85–91

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary LR, Hofmeister AM, Hruska KA (2004) Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone 34:402–411

    Article  PubMed  CAS  Google Scholar 

  • Cool SM, Snyman CP, Nurcombe V, Forwood M (2004) Temporal expression of fibroblast growth factor receptors during primary ligament repair. Knee Surg Sports Traumatol Arthrosc 12:490–496

    Article  PubMed  Google Scholar 

  • Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82

    Article  PubMed  Google Scholar 

  • Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY (2002) Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397:162–171

    Article  PubMed  CAS  Google Scholar 

  • Diefenderfer DL, Osyczka AM, Garino JP, Leboy PS (2003) Regulation of BMP-induced transcription in cultured human bone marrow stromal cells. J Bone Jt Surg Am 85-A (Suppl 3):19–28

    Google Scholar 

  • Fukushima H, Jimi E, Kajiya H, Motokawa W, Okabe K (2005) Parathyroid-hormone-related protein induces expression of receptor activator of NF-{kappa}B ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway. J Dent Res 84:329–334

    PubMed  CAS  Google Scholar 

  • Gagliardi AD, Kuo EY, Raulic S, Wagner GF, DiMattia GE (2005) Human stanniocalcin-2 exhibits potent growth-suppressive properties in transgenic mice independently of growth hormone and IGFs. Am J Physiol Endocrinol Metab 288:E92–E105

    Article  PubMed  CAS  Google Scholar 

  • Gaunt WA, Osborn JW, TenCate AR (1971) The periodontal ligament advanced dental histology. Williams and Wilins, Baltimore

    Google Scholar 

  • Gazzerro E, Pereira RC, Jorgetti V, Olson S, Economides AN, Canalis E (2005) Skeletal overexpression of Gremlin impairs bone formation and causes osteopenia. Endocrinology 146:655–665

    Article  PubMed  CAS  Google Scholar 

  • Gensure RC, Gardella TJ, Juppner H (2005) Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 328:666–678

    Article  PubMed  CAS  Google Scholar 

  • Ghilzon R, McCulloch CA, Zohar R (1999) Stromal mesenchymal progenitor cells. Leuk Lymphoma 32:211–221

    PubMed  CAS  Google Scholar 

  • Giannopoulou C, Cimasoni G (1996) Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 75:895–902

    PubMed  CAS  Google Scholar 

  • Glister C, Richards SL, Knight PG (2005) Bone morphogenetic proteins (BMP) -4, -6, and -7 potently suppress basal and luteinizing hormone-induced androgen production by bovine theca interna cells in primary culture: could ovarian hyperandrogenic dysfunction be caused by a defect in thecal BMP signaling? Endocrinology 146:1883–1892

    Article  PubMed  CAS  Google Scholar 

  • Gould TR (1983) Ultrastructural characteristics of progenitor cell populations in the periodontal ligament. J Dent Res 62:873–876

    PubMed  CAS  Google Scholar 

  • Groeneveld MC, Everts V, Beertsen W (1995) Alkaline phosphatase activity in the periodontal ligament and gingiva of the rat molar: its relation to cementum formation. J Dent Res 74:1374–1381

    PubMed  CAS  Google Scholar 

  • Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8:171–179

    Article  PubMed  CAS  Google Scholar 

  • Grzesik WJ, Kuzentsov SA, Uzawa K, Mankani M, Robey PG, Yamauchi M (1998) Normal human cementum-derived cells: isolation, clonal expansion, and in vitro and in vivo characterization. J Bone Miner Res 13:1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Han X, Bolcato AL, Amar S (2002) Identification of genes differentially expressed in cultured human osteoblasts versus human fibroblasts by DNA microarray analysis. Connect Tissue Res 43:63–75

    PubMed  CAS  Google Scholar 

  • Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11:41–49

    Article  PubMed  CAS  Google Scholar 

  • Harrison CA, Wiater E, Gray PC, Greenwald J, Choe S, Vale W (2004) Modulation of activin and BMP signaling. Mol Cell Endocrinol 225:19–24

    Article  PubMed  CAS  Google Scholar 

  • Helm GA, Li JZ, Alden TD, Hudson SB, Beres EJ, Cunningham M, Mikkelsen MM, Pittman DD, Kerns KM, Kallmes DF (2001) A light and electron microscopic study of ectopic tendon and ligament formation induced by bone morphogenetic protein-13 adenoviral gene therapy. J Neurosurg 95:298–307

    Article  PubMed  CAS  Google Scholar 

  • Inzerillo AM, Zaidi M, Huang CL (2004) Calcitonin: physiological actions and clinical applications. J Pediatr Endocrinol Metab 17:931–940

    PubMed  CAS  Google Scholar 

  • Jukkola T, Trokovic R, Maj P, Lamberg A, Mankoo B, Pachnis V, Savilahti H, Partanen J (2005) Meox1Cre: a mouse line expressing Cre recombinase in somitic mesoderm. Genesis 43:148–153

    Article  PubMed  CAS  Google Scholar 

  • Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S (2005) Stromal derived factor-1 promotes the growth, survival and development of human bone marrow stromal stem cells. Blood 105:3793–3801

    Article  PubMed  CAS  Google Scholar 

  • Lallier TE (2004) Semaphorin profiling of periodontal fibroblasts and osteoblasts. J Dent Res 83:677–682

    PubMed  CAS  Google Scholar 

  • Lallier TE, Spencer A, Fowler MM (2005) Transcript profiling of periodontal fibroblasts and osteoblasts. J Periodontol 76:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Lange C, Schroeder J, Stute N, Lioznov MV, Zander AR (2005) High-potential human mesenchymal stem cells. Stem Cells Dev 14:70–80

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324

    Article  PubMed  CAS  Google Scholar 

  • Lekic P, McCulloch CA (1996) Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec 245:327–341

    Article  PubMed  CAS  Google Scholar 

  • Lekic P, Sodek J, McCulloch CA (1996) Osteopontin and bone sialoprotein expression in regenerating rat periodontal ligament and alveolar bone. Anat Rec 244:50–58

    Article  PubMed  CAS  Google Scholar 

  • Lekic PC, Rajshankar D, Chen H, Tenenbaum H, McCulloch CA (2001) Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 262:193–202

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Friesen MT, Bocangel P, Cheung D, Rawszer K, Wigle JT (2005) Characterization of mesenchyme homeobox 2 (MEOX2) transcription factor binding to RING finger protein 10. Mol Cell Biochem 275:75–84

    Article  PubMed  CAS  Google Scholar 

  • Locklin RM, Oreffo RO, Triffitt JT (1999) Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int 23:185–194

    Article  PubMed  CAS  Google Scholar 

  • Manicourt DH, Altman RD, Williams JM, Devogelaer JP, Druetz-Van Egeren A, Lenz ME, Pietryla D, Thonar EJ (1999) Treatment with calcitonin suppresses the responses of bone, cartilage, and synovium in the early stages of canine experimental osteoarthritis and significantly reduces the severity of the cartilage lesions. Arthritis Rheum 42:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Mankoo BS, Skuntz S, Harrigan I, Grigorieva E, Candia A, Wright CV, Arnheiter H, Pachnis V (2003) The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 130:4655–4664

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Gantes B, Garrett S, Egelberg J (1988) Treatment of periodontal furcation defects. I. Review of the literature and description of a regenerative surgical technique. J Clin Periodontol 15:227–231

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Tsujimura A, Yoshioka M, Arai Y, Kuboki Y, Mukai T, Nakamura T, Tsuji H, Nakagawa M, Hashimoto-Gotoh T (1997) Bone mass loss due to estrogen deficiency is compensated in transgenic mice overexpressing human osteoblast stimulating factor-1. Biochem Biophys Res Commun 238:528–533

    Article  PubMed  CAS  Google Scholar 

  • McCulloch CA (1985) Progenitor cell populations in the periodontal ligament of mice. Anat Rec 211:258–262

    Article  PubMed  CAS  Google Scholar 

  • McKee MD, Zalzal S, Nanci A (1996) Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245:293–312

    Article  PubMed  CAS  Google Scholar 

  • Mehta NM, Malootian A, Gilligan JP (2003) Calcitonin for osteoporosis and bone pain. Curr Pharm Des 9:2659–2676

    Article  PubMed  CAS  Google Scholar 

  • Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM (1999) The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126:5515–5522

    PubMed  CAS  Google Scholar 

  • Morotome Y, Goseki-Sone M, Ishikawa I, Oida S (1998) Gene expression of growth and differentiation factors-5, -6, and -7 in developing bovine tooth at the root forming stage. Biochem Biophys Res Commun 244:85–90

    Article  PubMed  CAS  Google Scholar 

  • Moussad EE, Brigstock DR (2000) Connective tissue growth factor: what’s in a name? Mol Genet Metab 71:276–292

    Article  PubMed  CAS  Google Scholar 

  • Muff R, Born W, Lutz TA, Fischer JA (2004) Biological importance of the peptides of the calcitonin family as revealed by disruption and transfer of corresponding genes. Peptides 25:2027–2038

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Takayama S, Ikezawa K, Shimabukuro Y, Kitamura M, Nozaki T, Terashima A, Asano T, Okada H (1999) Regeneration of periodontal tissues by basic fibroblast growth factor. J Periodontal Res 34:425–430

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Takayama S, Kitamura M, Shimabukuro Y, Yanagi K, Ikezawa K, Saho T, Nozaki T, Okada H (2003a) Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res 38:97–103

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Kojima T, Nagasawa T, Kobayashi H, Ishikawa I (2003b) Novel isolation of alkaline phosphatase-positive subpopulation from periodontal ligament fibroblasts. J Periodontol 74:780–786

    Article  PubMed  CAS  Google Scholar 

  • Narayanan AS, Page RC (1983) Connective tissues of the periodontium: a summary of current work. Coll Relat Res 3:33–64

    PubMed  CAS  Google Scholar 

  • Nishimura F, Terranova VP (1996) Comparative study of the chemotactic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. J Dent Res 75:986–992

    PubMed  CAS  Google Scholar 

  • Ohshima M, Kuwata F, Otsuka K, Saito R, Sato K, Shioji S, Suzuki K (1988) Alkaline phosphatase activities of cultured human periodontal ligament cells. J Nihon Univ Sch Dent 30:208–217

    PubMed  CAS  Google Scholar 

  • Okamoto T, Yatsuzuka N, Tanaka Y, Kan M, Yamanaka T, Sakamoto A, Takata T, Akagawa Y, Sato GH, Sato JD, Takada K (1997) Growth and differentiation of periodontal ligament-derived cells in serum-free defined culture. In Vitro Cell Dev Biol Anim 33:302–309

    PubMed  CAS  Google Scholar 

  • Ouyang H, McCauley LK, Berry JE, D’Errico JA, Strayhorn CL, Somerman MJ (2000a) Response of immortalized murine cementoblasts/periodontal ligament cells to parathyroid hormone and parathyroid hormone-related protein in vitro. Arch Oral Biol 45:293–303

    Article  PubMed  CAS  Google Scholar 

  • Ouyang H, McCauley LK, Berry JE, Saygin NE, Tokiyasu Y, Somerman MJ (2000b) Parathyroid hormone-related protein regulates extracellular matrix gene expression in cementoblasts and inhibits cementoblast-mediated mineralization in vitro. J Bone Miner Res 15:2140–2153

    Article  PubMed  CAS  Google Scholar 

  • Palaiologou AA, Yukna RA, Moses R, Lallier TE (2001) Gingival, dermal, and periodontal ligament fibroblasts express different extracellular matrix receptors. J Periodontol 72:798–807

    Article  PubMed  CAS  Google Scholar 

  • Palmon A, Roos H, Reichenberg E, Grosskop A, Bar Kana I, Pitaru S, Redlich M (2001) Basic fibroblast growth factor suppresses tropoelastin gene expression in cultured human periodontal fibroblasts. J Periodontal Res 36:65–70

    Article  PubMed  CAS  Google Scholar 

  • Perera KA, Tonge CH (1981) Fibroblast cell proliferation in the mouse molar periodontal ligament. J Anat 133:77–90

    PubMed  CAS  Google Scholar 

  • Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Sekiya I, Colter DC (2001) Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy 3:393–396

    Article  PubMed  CAS  Google Scholar 

  • Provot S, Schipani E (2005) Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 328:658–665

    Article  PubMed  CAS  Google Scholar 

  • Rajshankar D, McCulloch CA, Tenenbaum HC, Lekic PC (1998) Osteogenic inhibition by rat periodontal ligament cells: modulation of bone morphogenic protein-7 activity in vivo. Cell Tissue Res 294:475–483

    Article  PubMed  CAS  Google Scholar 

  • Reddi AH (1981) Cell biology and biochemistry of endochondral bone development. Coll Relat Res 1:209–226

    PubMed  CAS  Google Scholar 

  • Ripamonti U, Heliotis M, Rueger DC, Sampath TK (1996) Induction of cementogenesis by recombinant human osteogenic protein-1 (hop-1/bmp-7) in the baboon (Papio ursinus). Arch Oral Biol 41:121–126

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo I, Bovolenta P, Mankoo BS, Imai K (2004) Meox homeodomain proteins are required for Bapx1 expression in the sclerotome and activate its transcription by direct binding to its promoter. Mol Cell Biol 24:2757–2766

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Kikuchi M, Ohata N, Tamura M, Kuboki Y (2004) Enhanced cementum formation in experimentally induced cementum defects of the root surface with the application of recombinant basic fibroblast growth factor in collagen gel in vivo. J Periodontol 75:243–248

    Article  PubMed  CAS  Google Scholar 

  • Sekiya I, Colter DC, Prockop DJ (2001) BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun 284:411–418

    Article  PubMed  CAS  Google Scholar 

  • Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005) Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320:269–276

    Article  PubMed  CAS  Google Scholar 

  • Sells Galvin RJ, Gatlin CL, Horn JW, Fuson TR (1999) TGF-beta enhances osteoclast differentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF. Biochem Biophys Res Commun 265:233–239

    Article  PubMed  CAS  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Zhao J, Anderson KD, Warburton D (2001) Gremlin negatively modulates BMP-4 induction of embryonic mouse lung branching morphogenesis. Am J Physiol Lung Cell Mol Physiol 280:L1030–L1039

    PubMed  CAS  Google Scholar 

  • Shimabukuro Y, Ichikawa T, Takayama S, Yamada S, Takedachi M, Terakura M, Hashikawa T, Murakami S (2005) Fibroblast growth factor-2 regulates the synthesis of hyaluronan by human periodontal ligament cells. J Cell Physiol 203:557–563

    Article  PubMed  CAS  Google Scholar 

  • Shimazu A, Morishita M (2003) Basic fibroblast growth factor induces the expression of matrix metalloproteinase-3 in human periodontal ligament cells through the MEK2 mitogen-activated protein kinase pathway. J Periodontal Res 38:122–129

    Article  PubMed  CAS  Google Scholar 

  • Takada K, Kajiya H, Fukushima H, Okamoto F, Motokawa W, Okabe K (2004) Calcitonin in human odontoclasts regulates root resorption activity via protein kinase A. J Bone Miner Metab 22:12–18

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Yoshida J, Hirano H, Okada H, Murakami S (2002) Effects of basic fibroblast growth factor on human gingival epithelial cells. J Periodontol 73:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Tardif G, Hum D, Pelletier JP, Boileau C, Ranger P, Martel-Pelletier J (2004) Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts. Arthritis Rheum 50:2521–2530

    Article  PubMed  CAS  Google Scholar 

  • Tenenbaum HC (1990) Cellular origins and theories of differentiation of bone-forming cells. Bone 1:41–69

    Google Scholar 

  • Urist MR, DeLange RJ, Finerman GA (1983) Bone cell differentiation and growth factors. Science 220:680–686

    Article  PubMed  CAS  Google Scholar 

  • Walsh S, Jefferiss C, Stewart K, Beresford JN (2003) TGFbeta1 limits the expansion of the osteoprogenitor fraction in cultures of human bone marrow stromal cells. Cell Tissue Res 311:187–198

    PubMed  CAS  Google Scholar 

  • Wan M, Cao X (2005) BMP signaling in skeletal development. Biochem Biophys Res Commun 328:651–657

    Article  PubMed  CAS  Google Scholar 

  • Wester L, Koczan D, Holmberg J, Olofsson P, Thiesen HJ, Holmdahl R, Ibrahim S (2003) Differential gene expression in pristane-induced arthritis susceptible DA versus resistant E3 rats. Arthritis Res Ther 5:R361–R372

    Article  PubMed  CAS  Google Scholar 

  • Woo SL, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH (1999) Tissue engineering of ligament and tendon healing. Clin Orthop 367 (Suppl):S312–S323

    Article  PubMed  Google Scholar 

  • Wu Z, Guo H, Chow N, Sallstrom J, Bell RD, Deane R, Brooks AI, Kanagala S, Rubio A, Sagare A, Liu D, Li F, Armstrong D, Gasiewicz T, Zidovetzki R, Song X, Hofman F, Zlokovic BV (2005) Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 11:959–965

    PubMed  CAS  Google Scholar 

  • Xu WP, Shiba H, Mizuno N, Uchida Y, Mouri Y, Kawaguchi H, Kurihara H (2004) Effect of bone morphogenetic proteins-4, -5 and -6 on DNA synthesis and expression of bone-related proteins in cultured human periodontal ligament cells. Cell Biol Int 28:675–682

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Shimizu N, Shibata Y, Abiko Y (1996) Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells. J Dent Res 75:889–894

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Furukawa K, Ueyama K, Nakanishi T, Takigawa M, Harata S (2002) Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament. Spine 27:1852–1857

    Article  PubMed  Google Scholar 

  • Yamashiro T, Fukunaga T, Kobashi N, Kamioka H, Nakanishi T, Takigawa M, Takano-Yamamoto T (2001) Mechanical stimulation induces CTGF expression in rat osteocytes. J Dent Res 80:461–465

    PubMed  CAS  Google Scholar 

  • Zhang N, Deuel TF (1999) Pleiotrophin and midkine, a family of mitogenic and angiogenic heparin-binding growth and differentiation factors. Curr Opin Hematol 6:44–50

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Berry JE, Somerman MJ (2003) Bone morphogenetic protein-2 inhibits differentiation and mineralization of cementoblasts in vitro. J Dent Res 82:23–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Gwen Corbett and Jeffery Anzalone for their assistance in collecting human PDL tissues, and Ms. Jill Schur for her assistance and advice with the microarrays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Lallier.

Additional information

This research was supported by the Louisiana Board of Regents through the Millennium Trust Health Excellence Fund,HEF-(2000-05)-04.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lallier, T.E., Spencer, A. Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation. Cell Tissue Res 327, 93–109 (2007). https://doi.org/10.1007/s00441-006-0282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0282-5

Keywords

Navigation