Skip to main content

Advertisement

Log in

Tangle evolution linked to differential 3- and 4-repeat tau isoform deposition: a double immunofluorolabeling study using two monoclonal antibodies

  • Short Communication
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Double immunofluorolabeling for 3-repeat (3R) and 4-repeat (4R) tau was performed with two monoclonal antibodies, RD3 and RD4, after an additional pretreatment with potassium permanganate and oxalic acid to eliminate nonspecific 3R tau cytoplasmic staining. This method involves hyperdilution of one of the primary monoclonal antibodies (≥100-fold), making it undetectable by usual secondary antibodies. The hyperdiluted primary antibody can then only be detected after tyramide amplification. Subsequent application of the other monoclonal antibody at its usual concentration allows double immunofluorolabeling without cross-reaction. This novel method revealed that tau immunoreactivity (IR) in the hippocampal pyramidal neurons of Alzheimer’s disease (AD) brains is heterogeneous in that pretangle neurons exhibit 4R-selective (3R−/4R+) IR, ghost tangles exhibit 3R-selective (3R+/4R−) IR, and neurofibrillary tangles exhibit both 3R and 4R (3R+/4R+) IR. Some nigral neurons exhibited RD3 IR in both AD and corticobasal degeneration/progressive supranuclear palsy (CBD/PSP) brains. However, in CBD/PSP cases, 3R IR was always superimposed on 4R IR, while 3R-selective neurons were present in AD cases. These differential isoform profiles may provide a pivotal molecular reference, closely related to the morphological evolution of tau-positive neurons, which may be variable according to disease (CBD/PSP vs. AD), lesion site (cerebral cortex and substantia nigra), or the stage of evolution (from pretangles to ghost tangles). These findings should provide a more comprehensive understanding of the histological differentiation of various tau deposits in human neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adams SJ, DeTure MA, McBride M, Dickson DW, Petrucelli L (2010) Three repeat isoforms of tau inhibit assembly of four repeat tau filaments. PLoS One 5:e10810

    Article  PubMed  Google Scholar 

  • Arima K, Nakamura M, Sunohara N, Nishio T, Ogawa M, Hirai S, Kawai M, Ikeda K (1999) Immunohistochemical and ultrastructural characterization of neuritic clusters around ghost tangles in the hippocampal formation in progressive supranuclear palsy brains. Acta Neuropathol 97:565–576

    Article  PubMed  CAS  Google Scholar 

  • Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    Article  PubMed  CAS  Google Scholar 

  • de Silva R, Lashley T, Gibb G, Hanger D, Hope A, Reid A, Bandopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol 29:288–302

    Article  PubMed  Google Scholar 

  • Delacourte A (2008) Tau, a biological marker of neurodegenerative diseases. In: Duyckaerts C, Litvan E (eds) Handbook of clinical neurology, vol 89 (dementias), chapter 15. Elsevier, Amsterdam, pp 161–172

    Google Scholar 

  • Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K, Jellinger K, Lantos PL, Lippa CF, Mirra SS, Tabaton M, Vonsattel JP, Wakabayashi K, Litvan I (2002) Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61:935–946

    PubMed  CAS  Google Scholar 

  • Dinkel PD, Siddiqua A, Huynh H, Shah M, Margittai M (2011) Variations in filament conformation dictate seeding barrier between three- and four-repeat tau. Biochemistry 50:4330–4336

    Article  PubMed  CAS  Google Scholar 

  • Espinoza M, de Silva R, Dickson DW, Davies P (2008) Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimers Dis 14:1–16

    PubMed  CAS  Google Scholar 

  • Flament S, Delacourte A, Verny M, Hauw JJ, Javoy-Agid F (1991) Abnormal Tau proteins in progressive supranuclear palsy: similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81:591–596

    Article  PubMed  CAS  Google Scholar 

  • Hanger DP, Gibb GM, de Silva R, Boutajangout A, Brion JP, Revesz T, Lees AJ, Anderton BH (2002) The complex relationship between soluble and insoluble tau in tauopathies revealed by efficient dephosphorylation and specific antibodies. FEBS Lett 531:538–542

    Article  PubMed  CAS  Google Scholar 

  • Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, McKee A, Tabaton M, Litvan I (1994) Preliminary NINDS neuropathologic criteria for Steele–Richardson–Olszewski syndrome (progressive supranuclear palsy). Neurology 44:2015–2019

    PubMed  CAS  Google Scholar 

  • Hunyady B, Krempels K, Harta G, Mezey E (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Iseki E, Matsumura T, Marui W, Hino H, Odawara T, Sugiyama N, Suzuki K, Sawada H, Arai T, Kosaka K (2001) Familial frontotemporal dementia and parkinsonism with a novel N296H mutation in exon 10 of the tau gene and a widespread tau accumulation in the glial cells. Acta Neuropathol 102:285–292

    PubMed  CAS  Google Scholar 

  • Iseki E, Yamamoto R, Murayama N, Minegishi M, Togo T, Katsuse O, Kosaka K, Akiyama H, Tsuchiya K, de Silva R, Andrew L, Arai H (2006) Immunohistochemical investigation of neurofibrillary tangles and their tau isoforms in brains of limbic neurofibrillary tangle dementia. Neurosci Lett 405:29–33

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA, Attems J (2007) Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol 113:107–117

    Article  PubMed  CAS  Google Scholar 

  • Jin C, Katayama S, Hiji M, Watanabe C, Noda K, Nakamura S, Matsumoto M (2006) Relationship between neuronal loss and tangle formation in neurons and oligodendroglia in progressive supranuclear palsy. Neuropathology 26:50–56

    Article  PubMed  Google Scholar 

  • Kanazawa T, Adachi E, Orimo S, Nakamura A, Mizusawa H, Uchihara T (in press) Pale neurites, premature alpha-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol doi:10.1111/j.1750-3639.2011.00509.x

  • Kitamura T, Sugimori K, Sudo S, Kobayashi K (2005) Relationship between microtubule-binding repeats and morphology of neurofibrillary tangle in Alzheimer’s disease. Acta Neurol Scandinav 112:327–334

    Article  CAS  Google Scholar 

  • Lace G, Savva GM, Forster G, de Silva R, Brayne C, Matthews FE, Barclay JJ, Dakin L, Ince PG, Wharton SB (2009) Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain 132:1324–1334

    Article  PubMed  CAS  Google Scholar 

  • Li F, Iseki E, Odawara T, Kosaka K, Yagishita S, Amano N (1998) Regional quantitative analysis of tau-positive neurons in progressive supranuclear palsy: comparison with Alzheimer’s disease. J Neurol Sci 159:73–81

    Article  PubMed  CAS  Google Scholar 

  • Litvan I, Hauw JJ, Bartko JJ, Lantos PL, Daniel SE, Horoupian DS, McKee A, Dickson D, Bancher C, Tabaton M, Jellinger K, Anderson DW (1996) Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 55:97–105

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Uchihara T (2004) Dual enhancement of triple immunofluorescence using two antibodies from the same species. J Neurosci Methods 135:67–70

    Article  PubMed  CAS  Google Scholar 

  • Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M (2010) Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem 285:34885–34898

    Article  PubMed  CAS  Google Scholar 

  • Siddiqua A, Margittai M (2010) Three- and four-repeat Tau coassemble into heterogeneous filaments: an implication for Alzheimer disease. J Biol Chem 285:37920–37926

    Article  PubMed  CAS  Google Scholar 

  • Uchihara T, Tsuchiya K (2008) Neuropathology of Pick body disease. In: Duyckaerts C, Litvan E (eds) Handbook of clinical neurology, vol 89 (dementias), chapter 15. Elsevier, Amsterdam, pp 415–430

    Google Scholar 

  • Uchihara T, Nakamura A, Nagaoka U, Yamazaki M, Mori O (2000) Dual enhancement of double immunofluorescent signals by CARD: participation of ubiquitin during formation of neurofibrillary tangles. Histochem Cell Biol 114:447–451

    PubMed  CAS  Google Scholar 

  • Uchihara T, Nakamura A, Yamazaki M, Mori O (2001) Evolution from pretangle neurons to neurofibrillary tangles monitored by thiazin red combined with Gallyas method and double immunofluorescence. Acta Neuropathol 101:535–539

    PubMed  CAS  Google Scholar 

  • Uchihara T, Nakamura A, Nakayama H, Arima K, Ishizuka N, Mori H, Mizushima S (2003) Triple immunofluorolabeling with two rabbit polyclonal antibodies and a mouse monoclonal antibody allowing three-dimensional analysis of cotton wool plaques in Alzheimer disease. J Histochem Cytochem 51:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Uchihara T, Nakamura A, Shibuya K, Yagishita S (2011) Specific detection of pathological three-repeat tau after pretreatment with potassium permanganate and oxalic acid in PSP/CBD brains. Brain Pathol 21:180–188

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M (2006) Cellular tau pathology and immunohistochemical study of tau isoforms in sporadic tauopathies. Neuropathology 26:457–470

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Uchihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchihara, T., Hara, M., Nakamura, A. et al. Tangle evolution linked to differential 3- and 4-repeat tau isoform deposition: a double immunofluorolabeling study using two monoclonal antibodies. Histochem Cell Biol 137, 261–267 (2012). https://doi.org/10.1007/s00418-011-0891-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0891-2

Keywords

Navigation