Skip to main content

Advertisement

Log in

The CD34 surface antigen is restricted to glucagon-expressing cells in the early developing bovine pancreas

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Controversy remains regarding the origin of the pancreatic endocrine cells. It is generally accepted that the majority of insulin-secreting cells derive from the endodermal epithelium of the gastrointestinal tract. The aim of this study was to determine the contribution made by a particular cluster of differentiation (CD)-positive cells to the development of the bovine endocrine pancreas. In bovine embryos and foetuses with crown to rump lengths (CRL) ranging from 1 to 47 cm, cells staining positively for CD34 and/or CD133 were always more numerous in the left lobe and body of pancreas than in the right lobe. In the early stages of pancreatic development (CRL <5 cm), CD34 and/or CD133-reactive cells were concentrated within the epithelial cell cords that form the primitive pancreas. In later developmental stages (CRL >5 cm), individual or groups of CD34 and/or CD133-reactive cells were present in newly formed acini, which bulged out from the duct system that had arisen from the cords. Some of the positively stained cells accumulated in focal areas associated with hyperplastic intra-acinar cells. These “acino-insula-like complexes” appeared to enlarge with age and develop into intralobular Islets of Langerhans. Most of the described CD34 and/or CD133-reactive cells displayed co-localisation with glucagon. A negligible number of these cells showed co-localisation with insulin. Glucagon-stained cells were distinct from insulin-stained cells and were more abundant in embryonic and early foetal pancreata. Our data demonstrate that CD34 and/or CD133-reactive cells contribute to the pancreatic alpha cell population during early foetal development in cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bauer N, Fonseca AV, Florek M, Freund D, Jaszai J, Bornhauser M, Fargeas CA, Corbeil D (2008) New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 188:127–138

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  CAS  PubMed  Google Scholar 

  • Bonal C, Herrera PL (2008) Genes controlling pancreas ontogeny. Int J Dev Biol 52:823–835

    Article  CAS  PubMed  Google Scholar 

  • Buettner M, Dimmler A, Magener A, Brabletz T, Stolte M, Kirchner T, Faller G (2004) Gastric PDX-1 expression in pancreatic metaplasia and endocrine cell hyperplasia in atrophic corpus gastritis. Mod Pathol 17:56–61

    Article  CAS  PubMed  Google Scholar 

  • Buffa R, Crivelli O, Fiocca R, Fontana P, Solcia E (1979) Complement-mediated unspecific binding of immunoglobulins to some endocrine cells. Histochemistry 63:15–21

    Article  CAS  PubMed  Google Scholar 

  • Canfield P (1980) Development of the bovine metanephros. Anat Histol Embryol 9:97–107

    Article  CAS  PubMed  Google Scholar 

  • Carlsson GL, Scott Heller R, Serup P, Hyttel P (2010) Immunohistochemistry of Pancreatic Development in Cattle and Pig. Anat Histol Embryol 39(2):107–119

    Article  CAS  PubMed  Google Scholar 

  • Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17:2591–2603

    Article  CAS  PubMed  Google Scholar 

  • Collombat P, Hecksher-Sorensen J, Krull J, Berger J, Riedel D, Herrera PL, Serup P, Mansouri A (2007) Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Investig 117:961–970

    Article  CAS  PubMed  Google Scholar 

  • Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG, Copland JA, Forraz N, McGuckin C, Urban R (2007) Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif 40:367–380

    Article  CAS  PubMed  Google Scholar 

  • Desgraz R, Herrera PL (2009) Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136:3567–3574

    Article  CAS  PubMed  Google Scholar 

  • Edlund H (1999) Pancreas: how to get there from the gut? Curr Opin Cell Biol 11:663–668

    Article  CAS  PubMed  Google Scholar 

  • Elrick LJ, Docherty K (2001) Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1. Diabetes 50:2244–2252

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Song L, Shen K, Wang H, Niu W, Qin X (2008) Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice. Biochem Biophys Res Commun 371:132–137

    Article  CAS  PubMed  Google Scholar 

  • Gauthier BR, Gosmain Y, Mamin A, Philippe J (2007) The beta-cell specific transcription factor Nkx6.1 inhibits glucagon gene transcription by interfering with Pax6. Biochem J 403:593–601

    Article  CAS  PubMed  Google Scholar 

  • Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326:4–35

    Article  CAS  PubMed  Google Scholar 

  • Gittes GK, Rutter WJ (1992) Onset of cell-specific gene expression in the developing mouse pancreas. Proc Natl Acad Sci USA 89:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Goodrich AD, Ersek A, Varain NM, Groza D, Cenariu M, Thain DS, Almeida-Porada G, Porada CD, Zanjani ED (2010) In vivo generation of beta-cell-like cells from CD34(+) cells differentiated from human embryonic stem cells. Exp Hematol 38:516–525, e514

    Article  CAS  PubMed  Google Scholar 

  • Grube D, Weber E (1980) Immunoreactivities of gastrin (G-) cells. I. dilution-dependent staining of G-cells by antisera and non-immune sera. Histochemistry 65:223–237

    Article  CAS  PubMed  Google Scholar 

  • Heller RS, Stoffers DA, Liu A, Schedl A, Crenshaw EB 3rd, Madsen OD, Serup P (2004) The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity. Dev Biol 268:123–134

    Article  CAS  PubMed  Google Scholar 

  • Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, Bussolati B, Camussi G (2006) Isolation and characterization of a stem cell population from adult human liver. Stem cells (Dayton, Ohio) 24:2840–2850

    Article  CAS  Google Scholar 

  • Hori Y, Fukumoto M, Kuroda Y (2008) Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and platelet-derived growth factor receptor beta. Stem cells (Dayton, Ohio) 26:2912–2920

    Article  CAS  Google Scholar 

  • Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka-Reuveni Z, Reyes M (2010) Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PloS one 5:e10920

    Article  PubMed  Google Scholar 

  • Joanette EA, Reusens B, Arany E, Thyssen S, Remacle RC, Hill DJ (2004) Low-protein diet during early life causes a reduction in the frequency of cells immunopositive for nestin and CD34 in both pancreatic ducts and islets in the rat. Endocrinology 145:3004–3013

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J (2007) An illustrated review of early pancreas development in the mouse. Endocr Rev 28:685–705

    Article  PubMed  Google Scholar 

  • Karbanova J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P, Hollerova H, Jaszai J, Ehrmann J, Kolar Z, Liebers C, Arl S, Subrtova D, Freund D, Mokry J, Huttner WB, Corbeil D (2008) The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 56:977–993

    Article  CAS  PubMed  Google Scholar 

  • Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem cells (Dayton, Ohio) 25:2837–2844

    Article  CAS  Google Scholar 

  • Koblas T, Pektorova L, Zacharovova K, Berkova Z, Girman P, Dovolilova E, Karasova L, Saudek F (2008) Differentiation of CD133-positive pancreatic cells into insulin-producing islet-like cell clusters. Transpl Proc 40:415–418

    Article  CAS  Google Scholar 

  • Kopinke D, Murtaugh LC (2010) Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev Biol 10:38

    Article  PubMed  Google Scholar 

  • Kordes C, Sawitza I, Haussinger D (2009) Hepatic and pancreatic stellate cells in focus. Biol Chem 390:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Kritzik MR, Jones E, Chen Z, Krakowski M, Krahl T, Good A, Wright C, Fox H, Sarvetnick N (1999) PDX-1 and Msx-2 expression in the regenerating and developing pancreas. J Endocrinol 163:523–530

    Article  CAS  PubMed  Google Scholar 

  • Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L (2008) Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas 36:e1–e6

    Article  PubMed  Google Scholar 

  • Maneely RB (1952) Note on the ageing of bovine embryos. Vet Rec 64:509–511

    Google Scholar 

  • Merkwitz C, Ricken AM, Losche A, Sakurai M, Spanel-Borowski K (2010) Progenitor cells harvested from bovine follicles become endothelial cells. Differ Res Biol Div 79(4–5):203–210

    CAS  Google Scholar 

  • Miller K, Kim A, Kilimnik G, Jo J, Moka U, Periwal V, Hara M (2009) Islet formation during the neonatal development in mice. PloS one 4:e7739

    Article  PubMed  Google Scholar 

  • Nielsen JS, McNagny KM (2008) Novel functions of the CD34 family. J Cell Sci 121:3683–3692

    Article  CAS  PubMed  Google Scholar 

  • Niku M, Pessa-Morikawa T, Ra R, Ekman A, Iivanainen A (2007) Expression of CD34 mRNA and protein in cattle. Vet Immunol Immunopathol 117:162–172

    Article  CAS  PubMed  Google Scholar 

  • Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H (2007) Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 132:720–732

    Article  CAS  PubMed  Google Scholar 

  • Park IS, Bendayan M (1993) Development of the endocrine cells in the rat pancreatic and bile duct system. Histochem J 25:807–820

    CAS  PubMed  Google Scholar 

  • Peters J, Jurgensen A, Kloppel G (2000) Ontogeny, differentiation and growth of the endocrine pancreas. Virchows Arch 436:527–538

    Article  CAS  PubMed  Google Scholar 

  • Prasadan K, Daume E, Preuett B, Spilde T, Bhatia A, Kobayashi H, Hembree M, Manna P, Gittes GK (2002) Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas. Diabetes 51:3229–3236

    Article  CAS  PubMed  Google Scholar 

  • Rall LB, Pictet RL, Williams RH, Rutter WJ (1973) Early differentiation of glucagon-producing cells in embryonic pancreas: a possible developmental role for glucagon. Proc Natl Acad Sci USA 70:3478–3482

    Article  CAS  PubMed  Google Scholar 

  • Reddy S, Elliott RB (1988) Ontogenic development of peptide hormones in the mammalian fetal pancreas. Experientia 44:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ritz-Laser B, Estreicher A, Gauthier BR, Mamin A, Edlund H, Philippe J (2002) The pancreatic beta-cell-specific transcription factor Pax-4 inhibits glucagon gene expression through Pax-6. Diabetologia 45:97–107

    Article  CAS  PubMed  Google Scholar 

  • Rojas A, Khoo A, Tejedo JR, Bedoya FJ, Soria B, Martin F (2010) Islet cell development. Adv Exp Med Biol 654:59–75

    Article  CAS  PubMed  Google Scholar 

  • Sakurai M, Furusawa T, Ikeda M, Hikono H, Shimizu S, Gotoh H, Kobayashi E, Momotani E (2006) Anti-bovine CD34 monoclonal antibody reveals polymorphisms within coding region of the CD34 gene. Exp Hematol 34:905–913

    Article  CAS  PubMed  Google Scholar 

  • Sangan CB, Tosh D (2010) A new paradigm in cell therapy for diabetes: Turning pancreatic alpha-cells into beta-cells. Bioessays 32(10):881–884

    Article  PubMed  Google Scholar 

  • Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM, Jensen J, Hayek A, Hutton JC (2008) Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 51:285–297

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94:2548–2554

    CAS  PubMed  Google Scholar 

  • Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110

    Article  CAS  PubMed  Google Scholar 

  • Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev cell 17:505–515

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama T, Rodriguez RT, McLean GW, Kim SK (2007) Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci USA 104:175–180

    Article  CAS  PubMed  Google Scholar 

  • Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Tasaka Y, Matsumoto H, Inoue Y, Hirata Y (1989) Contents and secretion of glucagon and insulin in rat pancreatic islets from the viewpoint of their localization in pancreas. Tohoku J Exp Med 159:123–130

    Article  CAS  PubMed  Google Scholar 

  • Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, Tennant RW (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120:501–511

    Article  CAS  PubMed  Google Scholar 

  • Tsikolia N, Merkwitz C, Sass K, Sakurai M, Spanel-Borowski K, Ricken AM (2009) Characterization of bovine fetal Leydig cells by KIT expression. Histochem Cell Biol 132(6):623–632

    Article  CAS  PubMed  Google Scholar 

  • Wittingen J, Frey CF (1974) Islet concentration in the head, body, tail and uncinate process of the pancreas. Ann Surg 179:412–414

    Article  CAS  PubMed  Google Scholar 

  • Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, Wu YL (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differ Res Biol Div 77:483–491

    CAS  Google Scholar 

  • Zhang L, Hong TP, Hu J, Liu YN, Wu YH, Li LS (2005) Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells. World J Gastroenterol 11:2906–2911

    CAS  PubMed  Google Scholar 

  • Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA (2007) A multipotent progenitor domain guides pancreatic organogenesis. Dev cell 13:103–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Angela Ehrlich for all her drives to the abattoir in Altenburg, Germany and to Dr. G. Domel and the meat hygiene and inspection team for all the support on the ground. We greatly appreciate Dr. Joel F Habener for his kind gift of anti-Pdx1 antibody Hm253. We thank our colleagues for their insightful discussions, comments and technical help; in particular, we thank Sonja Kallendrusch for her great help in the experimental verification of our results by triple labelling. The Helsinki Group was supported by grants from the Academy of Finland (122540/2007) and The Research Funds of The University of Helsinki (914/51/2006). Paul Lochhead is funded by a fellowship from the Chief Scientist Office of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert M. Ricken.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2010_775_MOESM1_ESM.pdf

Supplemental Figure S1. a to c Selective IHC staining of hematopoietic foetal liver cells (arrows) with anti-CD133 (a) and anti-CD34 antisera (b), and mAb N21 (c). d to f CD34 IHC staining of the endothelial lining of capillaries (d and e arrows) and larger blood vessels (f stars). g to j Staining of subsequent serial sections of foetal liver (g and h) and pancreas (i and j) with antigen pre-absorbed (preab, g and i) and native (h and j) anti-CD34 antiserum (AS). Pre-absorption of the antiserum blocks immunoreactivity with foetal liver (g) and pancreas (i) tissue. k and l Subsequent serial sections of foetal pancreas are probed with anti-CD34 antiserum pre-incubated with equimolar quantities of either CD34 antigen (k) or glucagon (l). Pre-incubation of the antiserum with glucagon, instead of specific antigen, results in prominent staining of acinar cells. Scale bars as indicated. (PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkwitz, C., Pessa-Morikawa, T., Lochhead, P. et al. The CD34 surface antigen is restricted to glucagon-expressing cells in the early developing bovine pancreas. Histochem Cell Biol 135, 59–71 (2011). https://doi.org/10.1007/s00418-010-0775-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0775-x

Keywords

Navigation