Skip to main content

Advertisement

Log in

The evolution of mechanism of accommodation and a novel hypothesis

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Myopia and presbyopia are two major optometry problems facing the whole society. The mechanism of accommodation is strongly related to the treatments of myopia and presbyopia. However, the key mechanism of accommodation has puzzled us for over 400 years and is still not clear at present, leading to the stagnation of prevention and treatment of myopia and presbyopia. With the continued development of experimental technologies and equipment, the approaches to elucidate accommodation's intricacies have become more methodological and sophisticated. Fortunately, some significant progress has been made. This article is to review the evolution of the mechanism of accommodation. Helmholtz proposed a classical theory of “zonules relax during accommodation.” In contrast, Schachar put forward a theory of “zonules taut during accommodation.” Those hypotheses are relatively complete, but either do not fully explain everything about the accommodation mechanism or lack sufficient experimental and clinical evidence to support them. Then, some contentious issues are discussed in detail to find the truth. Finally, we proposed our hypothesis about accommodation based on the anatomy of the accommodative apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kepler J (1611) Dioptrice, Augsburg

  2. Scheiner C ((1619)) Oculus, Innsbruck

  3. Descartes R ((1677)) Traité de l’homme, Paris

  4. Lobé JP ((1742)) Dissertatio de oculo humano. Lugd Batav:119

  5. Young T (1801) On the mechanism of the eye. Philos Trans 92:23–88

    Google Scholar 

  6. von Helmholtz H (1855) Über die akommodation des auges. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1:1–89

    Article  Google Scholar 

  7. Tscherning M (1904) Physiological optics. Keystone, Philadelphia, pp 160–189

    Google Scholar 

  8. Schachar RA, Bax AJ (2001) Mechanism of accommodation. Int Ophthalmol Clin 41(2):17–32. https://doi.org/10.1097/00004397-200104000-00004

    Article  CAS  PubMed  Google Scholar 

  9. Schachar RA (2006) The mechanism of accommodation and presbyopia. Int Ophthalmol Clin 46(3):39–61. Epub 2006/08/25. https://doi.org/10.1097/00004397-200604630-00006

    Article  PubMed  Google Scholar 

  10. Wilson RS (1993) A new theory of human accommodation: cilio-zonular compression of the lens equator. Trans Am Ophthalmol Soc 91(discussion 16-9):401–416 Epub 1993/01/01

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brücke v. (1846) Uber das verhalter der optischen medien des auges gegen die Sonnenstrahlen. der Gesellschaft der Naturforscheden Freunde 21:379–382

    Google Scholar 

  12. Listing JB (1853) Wagner’s handwőrterbuch. d Physiologie, Braunschweig, p 498

  13. Atchison DA, Charman WN (2010) Thomas Young’s contribution to visual optics: the Bakerian lecture “on the mechanism of the eye”. J Vis 10(12):16. Epub 2010/11/05. https://doi.org/10.1167/10.12.16

    Article  PubMed  Google Scholar 

  14. Mallen EA, Kashyap P, Hampson KM (2006) Transient axial length change during the accommodation response in young adults. Invest Ophthalmol Vis Sci 47(3):1251–1254. Epub 2006/03/01. https://doi.org/10.1167/iovs.05-1086

    Article  PubMed  Google Scholar 

  15. Woodman EC, Read SA, Collins MJ (2012) Axial length and choroidal thickness changes accompanying prolonged accommodation in myopes and emmetropes. Vision Res 72:34–41. Epub 2012/09/29. https://doi.org/10.1016/j.visres.2012.09.009

    Article  PubMed  Google Scholar 

  16. Hughes RPJ, Read SA, Collins MJ, Vincent SJ (2022) Axial elongation during short-term accommodation in myopic and nonmyopic children. Invest Ophthalmol Vis Sci 63(3):12. Epub 2022/03/12. https://doi.org/10.1167/iovs.63.3.12

    Article  PubMed  PubMed Central  Google Scholar 

  17. Purkinje JE (1823) Beobachtungen u. Versuche z. . Physiologie d Sinne 2:128

    Google Scholar 

  18. Bruecke VE (1846) Arch Anat Physiol Wiss Med:370

  19. Bowman W (1849) And on the structure of the retina. Lectures on the Parts Concerned in the Operations on the Eye, London, p 62

    Google Scholar 

  20. Cramer A (1853) Het accommodatie-Vermogen Physiologisch toegelicht, Haarlem

  21. Donders FC (1864) Accommodation and refraction of the eye. New Sydenham Society, London, pp 204–215

    Google Scholar 

  22. Schachar RA, Fygenson DK (2007) Topographical changes of biconvex objects during equatorial traction: an analogy for accommodation of the human lens. Br J Ophthalmol 91(12):1698–1703. Epub 2006/07/14. https://doi.org/10.1136/bjo.2006.094888

    Article  CAS  PubMed  Google Scholar 

  23. Huggert A (1964) The intracapsular mechanism of accommodation. Acta Ophthalmol (Copenh) 42:389–397. Epub 1964/01/01. https://doi.org/10.1111/j.1755-3768.1964.tb03627.x

    Article  CAS  PubMed  Google Scholar 

  24. Morais FB (2018) Vision and the Nobel Prize. Arq Bras Oftalmol 81(2):161–165. Epub 2018/05/31. https://doi.org/10.5935/0004-2749.20180035

    Article  PubMed  Google Scholar 

  25. Ninomiya S, Fujikado T, Kuroda T et al (2002) Changes of ocular aberration with accommodation. Am J Ophthalmol 134(6):924–926. Epub 2002/12/10. https://doi.org/10.1016/s0002-9394(02)01856-1

    Article  PubMed  Google Scholar 

  26. Hazel CA, Cox MJ, Strang NC (2003) Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects. Optom Vis Sci 80(2):151–158. Epub 2003/02/25. https://doi.org/10.1097/00006324-200302000-00011

    Article  PubMed  Google Scholar 

  27. Plainis S, Ginis HS, Pallikaris A (2005) The effect of ocular aberrations on steady-state errors of accommodative response. J Vis 5(5):466–477. Epub 2005/08/16. https://doi.org/10.1167/5.5.7

    Article  PubMed  Google Scholar 

  28. Kasthurirangan S, Markwell EL, Atchison DA, Pope JM (2011) MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis 11(3)

  29. Kasthurirangan S, Markwell EL, Atchison DA, Pope JM (2008) In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation. Invest Ophthalmol Vis Sci 49(6):2531–2540. https://doi.org/10.1167/iovs.07-1443

    Article  PubMed  Google Scholar 

  30. Zheng SL, Zhang A, Shi JJ, Zhou YX (2013) Magnetic resonance imaging study of effects of accommodation on human lens morphological characters. Natl Med J China 93(41):3280–3283 Epub 2014/01/10

    Google Scholar 

  31. Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronlund-Jacob J, DeMarco JK (1999) Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci 40(6):1162–1169 Epub 1999/05/11

    CAS  PubMed  Google Scholar 

  32. Khan A, Pope JM, Verkicharla PK, Suheimat M, Atchison DA (2018) Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation. Biomed Opt Express 9(3):1272–1282. https://doi.org/10.1364/BOE.9.001272

    Article  PubMed  PubMed Central  Google Scholar 

  33. Glasser A, Wendt M, Ostrin L (2006) Accommodative changes in lens diameter in rhesus monkeys. Invest Ophthalmol Vis Sci. 47(1):278–286. Epub 2005/12/31. https://doi.org/10.1167/iovs.05-0890

    Article  PubMed  Google Scholar 

  34. Fu-ming L (2013) A novel concept of accommodation: human eyes optical system based on hyperfocal distance-micro zoom. Chin J Exp Ophthalmol 7:701–710

    Google Scholar 

  35. Koretz JF, Handelman GH, Brown NP (1984) Analysis of human crystalline lens curvature as a function of accommodative state and age. Vision Res 24(10):1141–1151. Epub 1984/01/01. https://doi.org/10.1016/0042-6989(84)90168-8

    Article  CAS  PubMed  Google Scholar 

  36. Tamm S, Tamm E, Rohen JW (1992) Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev 62(2):209–221. Epub 1992/02/01. https://doi.org/10.1016/0047-6374(92)90057-k

    Article  CAS  PubMed  Google Scholar 

  37. Wang K, Pierscionek BK (2019) Biomechanics of the human lens and accommodative system: functional relevance to physiological states. Prog Retin. Eye Res 71:114–131. Epub 2018/11/16. https://doi.org/10.1016/j.preteyeres.2018.11.004

    Article  Google Scholar 

  38. Hipsley A, Dementiev D (2006) VisioDynamics theory: a biomechanical model for the aging ocular organ. In: Ashok G, Urzua G, Dementiev D, Pinelli R (eds) Step by step innovations in presbyopia management. Jaypee Brothers Medical Publishers, New Delhi, pp 269–315

    Google Scholar 

  39. Atchison DA (1995) Accommodation and presbyopia. Ophthalmic Physiol Opt 15(4):255–272 Epub 1995/07/01

    Article  CAS  PubMed  Google Scholar 

  40. Schachar RA (2001) The correction of presbyopia. Int Ophthalmol Clin 41(2):53–70. Epub 2001/04/06. https://doi.org/10.1097/00004397-200104000-00007

    Article  CAS  PubMed  Google Scholar 

  41. Neider MW, Crawford K, Kaufman PL, Bito LZ (1990) In vivo videography of the rhesus monkey accommodative apparatus. Age-related loss of ciliary muscle response to central stimulation. Arch Ophthalmol 108(1):69–74. Epub 1990/01/01. https://doi.org/10.1001/archopht.1990.01070030075032

    Article  CAS  PubMed  Google Scholar 

  42. Lister LJ, Suheimat M, Verkicharla PK, Mallen EAH, Atchison DA (2016) Influence of gravity on ocular lens position. Invest Ophthalmol Vis Sci 57(4):1885–1891. https://doi.org/10.1167/iovs.15-18533

    Article  PubMed  Google Scholar 

  43. Schachar RA, Davila C, Pierscionek BK, Chen W, Ward WW (2007) The effect of human in vivo accommodation on crystalline lens stability. Br J Ophthalmol 91(6):790–793. Epub 2007/01/12. https://doi.org/10.1136/bjo.2006.110791

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schachar RA, Lewis FL (2003) Error tolerance in Helmholtzian accommodation. Ophthalmology 110(10):2066–2067. https://doi.org/10.1016/s0161-6420(03)00910-2

    Article  PubMed  Google Scholar 

  45. Schachar RA (2007) Letter to the editor: the lens is stable during accommodation. Ophthalmic Physiol Opt 27(5):520–521; author reply 2-3. Epub 2007/08/28. https://doi.org/10.1111/j.1475-1313.2007.00514.x

    Article  PubMed  Google Scholar 

  46. Grzybowski A, Schachar RA, Gaca-Wysocka M, Schachar IH, Kamangar F, Pierscionek BK (2018) Mechanism of accommodation assessed by change in precisely registered ocular images associated with concurrent change in auto-refraction. Graefes Arch Clin Exp Ophthalmol 256(2):395–402. Epub 2017/11/18. https://doi.org/10.1007/s00417-017-3843-2

    Article  PubMed  Google Scholar 

  47. Schachar RA, Mani M, Schachar IH (2017) Image registration reveals central lens thickness minimally increases during accommodation. Clin Ophthalmol 11:1625–1636. https://doi.org/10.2147/OPTH.S144238

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schachar RA, Cudmore DP (1994) The effect of gravity on the amplitude of accommodation. Ann Ophthalmol 26(3):65–70 Epub 1994/05/01

    CAS  PubMed  Google Scholar 

  49. Rosales P, Wendt M, Marcos S, Glasser A (2008) Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys. J Vis 8(1):18

    Article  Google Scholar 

  50. Stachs O, Martin H, Behrend D, Schmitz KP, Guthoff R (2006) Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation. Graefes Arch Clin Exp Ophthalmol 244(7):836–844. Epub 2005/10/06. https://doi.org/10.1007/s00417-005-0126-0

    Article  PubMed  Google Scholar 

  51. Fincham E (1937) The mechanism of accommodation. Br J Ophthalmol Monogr Suppl 8:1–80

    Google Scholar 

  52. Wilson RS (1997) Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infrared retro-illumination video photography and pixel unit measurements. Trans Am Ophthalmol Soc 95(discussion 7-70):261–267 Epub 1997/01/01

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wendt M, Croft MA, McDonald J, Kaufman PL, Glasser A (2008) Lens diameter and thickness as a function of age and pharmacologically stimulated accommodation in rhesus monkeys. Exp Eye Res 86(5):746–752. Epub 2008/03/18. https://doi.org/10.1016/j.exer.2008.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schachar RA, Schachar IH (2020) Intralenticular hydrostatic pressure increases during ciliary muscle contraction: a finding consistent with the schachar mechanism of accommodation. Invest Ophthalmol Vis Sci. 61(6). https://doi.org/10.1167/IOVS.61.6.34

  55. Chen Y, Gao J, Li L et al (2019) The ciliary muscle and zonules of zinn modulate lens intracellular hydrostatic pressure through transient receptor potential vanilloid channels. Invest Ophthalmol Vis Sci. 60(13):4416–4424. Epub 2019/10/23. https://doi.org/10.1167/iovs.19-27794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ai Z, Huilian Z, Jianjing S, Yunxin Z, Wei C (2020) Study on the lens accommodation theory of young people based on magnetic resonance imaging technique. Med Zhejiang 42(5):454–457. https://doi.org/10.12056/j.issn.1006-2785.2020.42.5.2018-856

    Article  Google Scholar 

  57. Schachar RA, Kamangar F (2006) Computer image analysis of ultrasound biomicroscopy of primate accommodation. Eye (Lond) 20(2):226–233. Epub 2005/04/09. https://doi.org/10.1038/sj.eye.6701838

    Article  CAS  PubMed  Google Scholar 

  58. Chien CH, Huang T, Schachar RA (2006) Analysis of human crystalline lens accommodation. J Biomech. 39(4):672–680. Epub 2005/07/19. https://doi.org/10.1016/j.jbiomech.2005.01.017

    Article  PubMed  Google Scholar 

  59. Demer JL, Kono R, Wright W (2003) Magnetic resonance imaging of human extraocular muscles in convergence. J Neurophysiol. 89(4):2072–2085. Epub 2003/04/11. https://doi.org/10.1152/jn.00636.2002

    Article  PubMed  Google Scholar 

  60. Buehren T, Collins MJ, Loughridge J, Carney LG, Iskander DR (2003) Corneal topography and accommodation. Cornea. 22(4):311–316. Epub 2003/06/07. https://doi.org/10.1097/00003226-200305000-00007

    Article  PubMed  Google Scholar 

  61. Brown N (1974) The change in lens curvature with age. Exp Eye Res. 19(2):175–183. Epub 1974/08/01. https://doi.org/10.1016/0014-4835(74)90034-7

    Article  CAS  PubMed  Google Scholar 

  62. Smith G, Atchison DA, Pierscionek BK (1992) Modeling the power of the aging human eye. J Opt Soc Am A 9(12):2111–2117. Epub 1992/12/01. https://doi.org/10.1364/josaa.9.002111

    Article  CAS  PubMed  Google Scholar 

  63. Pierscionek BK (1997) Refractive index contours in the human lens. Exp Eye Res. 64(6):887–893. Epub 1997/06/01. https://doi.org/10.1006/exer.1996.0252

    Article  CAS  PubMed  Google Scholar 

  64. Glasser A, Campbell MC (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res 39(11):1991–2015. Epub 1999/05/27. https://doi.org/10.1016/s0042-6989(98)00283-1

    Article  CAS  PubMed  Google Scholar 

  65. Beers AP, Van der Heijde GL (1994) Presbyopia and velocity of sound in the lens. Optom Vis Sci 71(4):250–253. Epub 1994/04/01. https://doi.org/10.1097/00006324-199404000-00004

    Article  CAS  PubMed  Google Scholar 

  66. Fisher RF (1988) The mechanics of accommodation in relation to presbyopia. Eye (Lond) 2(Pt 6):646–649. Epub 1988/01/01. https://doi.org/10.1038/eye.1988.119

    Article  PubMed  Google Scholar 

  67. Weale RA (1962) Presbyopia. Br J Ophthalmol 46(11):660–668. Epub 1962/11/01. https://doi.org/10.1136/bjo.46.11.660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baolin W, Guangqi H, Chaoyou Z et al (1983) Observation on vascular casts of uvea newborns by scanning electron microscopy. Acta Anatomica Sinica 14(1):109–113

    Google Scholar 

  69. Fengming L, Lixin X (2014) In: Lezheng W, Shizhou H (eds) Chinese ophthalmology, vol 3. People's Medical Publishing House, Bei Jing

    Google Scholar 

  70. Bassnett S (2021) Zinn’s zonule. Prog Retin Eye Res 82:100902. Epub 2020/09/28. https://doi.org/10.1016/j.preteyeres.2020.100902

    Article  CAS  PubMed  Google Scholar 

  71. Rohen JW (1979) Scanning electron microscopic studies of the zonular apparatus in human and monkey eyes. Invest Ophthalmol Vis Sci 18(2):133–144 Epub 1979/02/01

    CAS  PubMed  Google Scholar 

Download references

Funding

This review was funded by the Natural Science Foundation of China (no. 82171026).

Author information

Authors and Affiliations

Authors

Contributions

Guanghong Zhang had the idea for the article and drafted the manuscript; Qian Wei retrieved and ranked documents; Andy L. Lin and Lei Lu provided critical revision of the manuscript; Chao Qu provided supervisory support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lei Lu, Andy L. Lin or Chao Qu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wei, Q., Lu, L. et al. The evolution of mechanism of accommodation and a novel hypothesis. Graefes Arch Clin Exp Ophthalmol 261, 3083–3095 (2023). https://doi.org/10.1007/s00417-023-06045-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06045-w

Keywords

Navigation