Skip to main content

Advertisement

Log in

Accommodative changes produced in response to overnight orthokeratology

  • Miscellaneous
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate short-term (3 months) and long-term (3 years) accommodative changes produced by overnight orthokeratology (OK).

Methods

A prospective, longitudinal study on young adult subjects with low to moderate myopia was carried out. A total of 93 patients took part in the study. Out of these, 72 were enrolled into the short-term follow-up: 21 were on a control group, 26 on a Paragon CRT contact lenses group, and 25 on a Seefree contact lenses group. The other 21 patients were old CRT wearers on long-term follow-up. Accommodative function was assessed by means of negative and positive relative accommodation (NRA / PRA), monocular accommodative amplitude (MAA), accommodative lag, and monocular accommodative facility (MAF). These values were compared among the three short-term groups at the follow-up visit. The long- and short-term follow-up data was compared among the CRT groups.

Results

Subjective accommodative results did not suffer any statistically significant changes in any of the accommodative tests for any of the short-term groups when compared to baseline. There were no statistically significant differences between the three short-term groups at the follow-up visit. When comparing the short- and long-term groups, only the NRA showed a significant difference (p = 0.0006) among all the accommodation tests.

Conclusions

OK does not induce changes in the ocular accommodative function for either short-term or long-term periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpern M (1949) Accommodation and convergence with contact lenses. Am J Optom Arch Am Acad Optom 26:379–387

    Article  CAS  PubMed  Google Scholar 

  2. Robertson DM, Ogle KN, Dyer JA (1967) Influence of contact lenses on accommodation. Theoretic considerations and clinical study. Am J Ophthalmol 64:860–871

    Article  CAS  PubMed  Google Scholar 

  3. Carney LG, Woo GC (1977) Comparison of accommodation with rigid and flexible contact lenses. Am J Optom Physiol Optic 54:595–597

    Article  CAS  Google Scholar 

  4. Jimenez R, Martinez-Almeida L, Salas C, Ortiz C (2011) Contact lenses vs spectacles in myopes: is there any difference in accommodative and binocular function? Graefes Arch Clin Exp Ophthalmol 249:925–935. doi:10.1007/s00417-010-1570-z

    Article  PubMed  Google Scholar 

  5. Liu L, Yuan J, Li J, Li X, Wang Y (2008) Effect of laser in situ keratomileusis on accommodation. J Huazhong Univ Sci Technol Med Sci 28:596–598. doi:10.1007/s11596-008-0524-8

    Article  PubMed  Google Scholar 

  6. Karimian F, Baradaran-Rafii A, Bagheri A, Eslani M, Bayat H, Aramesh S, Yaseri M, Amin-Shokravi A (2010) Accommodative changes after photorefractive keratectomy in myopic eyes. Optom Vis Sci 87:833–838. doi:10.1097/OPX.0b013e3181f6fccc

    Article  PubMed  Google Scholar 

  7. Koffler BH, Sears JJ (2013) Myopia control in children through refractive therapy gas permeable contact lenses: is it for real? Am J Ophthalmol 156(6):1076.e1–1081.e1. doi:10.1016/j.ajo.2013.04.039

    Article  Google Scholar 

  8. Cheung SW, Cho P (2013) Validity of axial length measurements for monitoring myopic progression in orthokeratology. Invest Ophthalmol Vis Sci 54:1613–1615. doi:10.1167/iovs. 12-10434

    Article  PubMed  Google Scholar 

  9. Cho P, Cheung SW (2012) Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 53:7077–7085. doi:10.1167/iovs. 12-10565

    Article  PubMed  Google Scholar 

  10. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R (2012) Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci 53:5060–5065. doi:10.1167/iovs. 11-8005

    Article  PubMed  Google Scholar 

  11. Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T (2012) Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci 53:3913–3919. doi:10.1167/iovs. 11-8453

    Article  PubMed  Google Scholar 

  12. Kakita T, Hiraoka T, Oshika T (2011) Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 52:2170–2174. doi:10.1167/iovs. 10-5485

    Article  PubMed  Google Scholar 

  13. Walline JJ, Jones LA, Sinnott LT (2009) Corneal reshaping and myopia progression. Br J Ophthalmol 93:1181–1185. doi:10.1136/bjo.2008.151365

    Article  CAS  PubMed  Google Scholar 

  14. Cho P, Cheung SW, Edwards M (2005) The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 30:71–80. doi:10.1080/02713680590907256

    Article  PubMed  Google Scholar 

  15. McLeod ADL (2006) Effects of overnight orthokeratology on phoria, vergence, and accommodation in children. New England College of Optometry, pp. xi, 125 p

  16. Brand P (2013) The effect of orthokeratology on accommodative and convergence function: a clinic based pilot study. Optom Vis Perform 1:162–167

    Google Scholar 

  17. Antona Peñalba B (2010) Fiabilidad intraexaminador y concordancia de pruebas clínicas de evaluación de la visión binocular Optica II (Optometría y visión). Universidad Complutense de Madrid, Madrid. Spain, pp. 251. Thesis. http://eprints.ucm.es/10149/1/T30728.pdf

  18. Antona B, Barra F, Barrio A, Gonzalez E, Sanchez I (2009) Repeatability intraexaminer and agreement in amplitude of accommodation measurements. Graefes Arch Clin Exp Ophthalmol 247:121–127. doi:10.1007/s00417-008-0938-9

    Article  CAS  PubMed  Google Scholar 

  19. Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, Villa-Collar C, Lorente-Velazquez A (2011) Short-term effects of overnight orthokeratology on corneal cell morphology and corneal thickness. Cornea 30:646–654. doi:10.1097/ICO.0b013e31820009bc

    Article  PubMed  Google Scholar 

  20. Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, Villa-Collar C, Lorente-Velazquez A (2011) Long-term changes in corneal morphology induced by overnight orthokeratology. Curr Eye Res 36:895–904. doi:10.3109/02713683.2011.593723

    Article  PubMed  Google Scholar 

  21. Palomo-Alvarez C, Puell MC (2008) Accommodative function in school children with reading difficulties. Graefes Arch Clin Exp Ophthalmol 246:1769–1774. doi:10.1007/s00417-008-0921-5

    Article  PubMed  Google Scholar 

  22. Scheiman MM, Wick B (2008) Clinical management of binocular vision : heterophoric, accommodative and eye movement disorders. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  23. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R (2014) Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Eye Contact Lens 40:84–90. doi:10.1097/icl.0000000000000014

    Article  PubMed  Google Scholar 

  24. Santolaria E, Cervino A, Queiros A, Brautaset R, Gonzalez-Meijome JM (2013) Subjective satisfaction in long-term orthokeratology patients. Eye Contact Lens 39:388–393. doi:10.1097/ICL.0b013e3182a27777

    Article  PubMed  Google Scholar 

  25. Swarbrick HA (2006) Orthokeratology review and update. Clin Exp Optom 89:124–143. doi:10.1111/j.1444-0938.2006.00044.x

    Article  PubMed  Google Scholar 

  26. Cacho-Martinez P, Garcia-Munoz A, Ruiz-Cantero MT (2014) Is there any evidence for the validity of diagnostic criteria used for accommodative and nonstrabismic binocular dysfunctions? J Optom 7:2–21. doi:10.1016/j.optom.2013.01.004

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ninomiya S, Fujikado T, Kuroda T, Maeda N, Tano Y, Oshika T, Hirohara Y, Mihashi T (2002) Changes of ocular aberration with accommodation. Am J Ophthalmol 134:924–926

    Article  PubMed  Google Scholar 

  28. Hazel CA, Cox MJ, Strang NC (2003) Wavefront aberration and its relationship to the accommodative stimulus–response function in myopic subjects. Optom Vis Sci 80:151–158

    Article  PubMed  Google Scholar 

  29. Cheng H, Barnett JK, Vilupuru AS, Marsack JD, Kasthurirangan S, Applegate RA, Roorda A (2004) A population study on changes in wave aberrations with accommodation. J Vis 4:272–280. doi:10.1167/4.4.3

    Article  PubMed  Google Scholar 

  30. Iida Y, Shimizu K, Ito M, Suzuki M (2008) Influence of age on ocular wavefront aberration changes with accommodation. J Refract Surg 24:696–701

    PubMed  Google Scholar 

  31. Yuan Y, Shao Y, Tao A, Shen M, Wang J, Shi G, Chen Q, Zhu D, Lian Y, Qu J, Zhang Y, Lu F (2013) Ocular anterior segment biometry and high-order wavefront aberrations during accommodation. Invest Ophthalmol Vis Sci 54:7028–7037. doi:10.1167/iovs. 13-11893

    Article  PubMed  Google Scholar 

  32. Hiraoka T, Miyata K, Nakamura Y, Ogata M, Okamoto F, Oshika T (2014) Influence of cycloplegia with topical cyclopentolate on higher-order aberrations in myopic children. Eye (Lond). doi:10.1038/eye.2014.34

    Google Scholar 

  33. Tarrant J, Liu Y, Wildsoet CF (2009) Orthokeratology can decrease the accommodative lag in myopes. ARVO Meet Abstr 50:4294

    Google Scholar 

  34. Gifford P, Li M, Lu H, Miu J, Panjaya M, Swarbrick HA (2013) Corneal versus ocular aberrations after overnight orthokeratology. Optom Vis Sci 90:439–447. doi:10.1097/OPX.0b013e31828ec594

    Article  PubMed  Google Scholar 

  35. Gonzalez-Mesa A, Villa-Collar C, Lorente-Velazquez A, Nieto-Bona A (2013) Anterior segment changes produced in response to long-term overnight orthokeratology. Curr Eye Res 38:862–870. doi:10.3109/02713683.2013.790977

    Article  PubMed  Google Scholar 

  36. Owens H, Garner LF, Craig JP, Gamble G (2004) Posterior corneal changes with orthokeratology. Optom Vis Sci 81:421–426

    Article  PubMed  Google Scholar 

  37. Stillitano IG, Chalita MR, Schor P, Maidana E, Lui MM, Lipener C, Hofling-Lima AL (2007) Corneal changes and wavefront analysis after orthokeratology fitting test. Am J Ophthalmol 144:378–386. doi:10.1016/j.ajo.2007.05.030

    Article  PubMed  Google Scholar 

  38. Tsukiyama J, Miyamoto Y, Higaki S, Fukuda M, Shimomura Y (2008) Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology. Eye Contact Lens 34:17–20. doi:10.1097/ICL.0b013e3180515299

    Article  PubMed  Google Scholar 

  39. Chen D, Lam AK, Cho P (2010) Posterior corneal curvature change and recovery after 6 months of overnight orthokeratology treatment. Ophthalmic Physiol Opt 30:274–280. doi:10.1111/j.1475-1313.2010.00710.x

    Article  PubMed  Google Scholar 

  40. Queiros A, Villa-Collar C, Gutierrez AR, Jorge J, Ribeiro-Queiros MS, Peixoto-de-Matos SC, Gonzalez-Meijome JM (2011) Anterior and posterior corneal elevation after orthokeratology and standard and customized LASIK surgery. Eye Contact Lens 37:354–358. doi:10.1097/ICL.0b013e318232e32d

    Article  PubMed  Google Scholar 

  41. Yoon JH, Swarbrick HA (2013) Posterior corneal shape changes in myopic overnight orthokeratology. Optom Vis Sci 90:196–204. doi:10.1097/OPX.0b013e31828121eb

    Article  PubMed  Google Scholar 

  42. Yuan Y, Chen F, Shen M, Lu F, Wang J (2012) Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye Contact Lens 38:102–108. doi:10.1097/ICL.0b013e318243e795

    Article  PubMed Central  PubMed  Google Scholar 

  43. Zhu D, Shao Y, Leng L, Xu Z, Wang J, Lu F, Shen M (2014) Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography. Eye Contact Lens. doi:10.1097/ICL.0000000000000043

    Google Scholar 

  44. García A, Cacho P, Lara F (2002) Evaluating relative accommodations in general binocular dysfunctions. Optom Vis Sci 79:779–787

    Article  PubMed  Google Scholar 

  45. Aldaba M, Vilaseca M, Arjona M, Pujol J (2013) Age-related changes in accommodation measured with a double-pass system. Ophthalmic Physiol Opt 33:508–515. doi:10.1111/opo.12038

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Interlenco (Madrid, Spain), Conóptica (Barcelona, Spain), and Avizor (Madrid, Spain) laboratories for their support.

Conflict of interest

The authors declare no financial or proprietary interests in any of the materials or methods mentioned.

No sources of public or private financial support declared.

Presentation at a conference

None

Clinical trial registration number if required

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Felipe-Marquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felipe-Marquez, G., Nombela-Palomo, M., Cacho, I. et al. Accommodative changes produced in response to overnight orthokeratology. Graefes Arch Clin Exp Ophthalmol 253, 619–626 (2015). https://doi.org/10.1007/s00417-014-2865-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2865-2

Keywords

Navigation