Skip to main content

Advertisement

Log in

Carvacrol protects the ARPE19 retinal pigment epithelial cells against high glucose-induced oxidative stress, apoptosis, and inflammation by suppressing the TRPM2 channel signaling pathways

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The concentration of plasma high glucose (HGu) in diabetes mellitus (DM) induces the retinal pigment epithelial cell (ARPE19) death via the increase of inflammation, cytosolic (cytROS), and mitochondrial (mitROS) free oxygen radical generations. Transient potential melastatin 2 (TRPM2) cation channel is stimulated by cytROS and mitROS. Hence, the cytROS and mitROS-mediated excessive Ca2+ influxes via the stimulation of TRPM2 channel cause to the induction of DM-mediated retina oxidative cytotoxicity. Because of the antioxidant role of carvacrol (CRV), it may modulate oxidative cytotoxicity via the attenuation of TRPM2 in the ARPE19. We aimed to investigate the modulator action of CRV treatment on the HGu-mediated TRPM2 stimulation, oxidative stress, and apoptosis in the ARPE19 cell model.

Material and methods

The ARPE19 cells were divided into four groups as normal glucose (NGu), NGu + Carv, HGu, and HGu + CRV.

Results

The levels of cell death (propidium iodide/Hoechst rate) and apoptosis markers (caspases 3, 8, and 9), cytokine generations (IL-1β and TNF-α), ROS productions (cytROS, mitROS, and lipid peroxidation), TRPM2 currents, and intracellular free Ca2+ (Fluo/3) were increased in the HGu group after the stimulations of hydrogen peroxide and ADP-ribose, although their levels were diminished via upregulation of glutathione and glutathione peroxidase by the treatments of CRV and TRPM2 blockers.

Conclusion

Current results confirmed that the HGu-induced overload Ca2+ influx and oxidative retinal toxicity in the ARPE19 cells were induced by the stimulation of TRPM2, although they were modulated via the inhibition of TRPM2 by CRV. CRV may be noted as a potential therapeutic antioxidant to the TRPM2 activation-mediated retinal oxidative injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data analyses in the current study were performed in the BSN Health, Analyses, Innov., Consul., Org., Agricul. and Industry Ltd (Isparta, Turkey) https://www.bsnsaglik.com.tr/. The details of current analyses are available from Prof. Dr. M. Nazıroğlu on reasonable request.

Abbreviations

2APB:

2-Aminoethoxydiphenyl borate

ACA:

N-(p-amylcinnamoyl)anthranilic acid

ADPR:

ADP-ribose

ARPE19:

Adult retinal pigment epithelial 19

BF:

Bright field

Ca2+ :

Calcium ion

CASP/3:

Caspase 3

CASP/8:

Caspase 8

CASP/9:

Caspase 9

CLSM:

Confocal laser scanning microscope

CRV:

Carvacrol

cytCa2+ :

Cytosolic free calcium ion

cytROS:

Cytosolic free reactive oxygen radicals

cytZn2+ :

Cytosolic free Zn2+

DM:

Diabetes mellitus

DRG:

Dorsal root ganglion

ROS:

Free reactive oxygen radicals

GPx:

Glutathione peroxidase

HGu:

High glucose

LPO:

Lipid peroxidation

mitROS:

Mitochondrial free reactive oxygen radicals

mitMP:

Mitochondrial membrane potential

NGu:

Normal glucose

PARP1:

Poly [ADP-ribose] polymerase 1

SERCA:

Sarco(endo)plasmic reticulum Ca2+-ATPase

TRP:

Transient receptor potential

TRPM2 :

Transient receptor potential melastatin 2

References

  1. Buch H, Vinding T, La Cour M, Appleyard M, Jensen GB, Nielsen NV (2004) Prevalence 9 and causes of visual impairment and blindness among 9980 Scandinavian adults: The 10 copenhagen city eye study. Ophthalmology 111:53–61

    Article  Google Scholar 

  2. Quartilho A, Simkiss P, Zekite A, Xing W, Wormald R, Bunce C (2016) Leading causes of certifiable visual loss in England and Wales during the year ending 31 March. Eye (Lond) 30(4):602–607. https://doi.org/10.1038/eye.2015.288

    Article  CAS  Google Scholar 

  3. Calderon GD, Juarez OH, Hernandez GE, Punzo M, De la Cruz ZD (2017) Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond) 31(8):1122–1130. https://doi.org/10.1038/eye.2017.64

    Article  CAS  Google Scholar 

  4. Tsai FJ, Li TM, Ko CH et al (2017) Effects of Chinese herbal medicines on the occurrence of diabetic retinopathy in type 2 diabetes patients and protection of ARPE-19 retina cells by inhibiting oxidative stress. Oncotarget. 8(38): 63528–63550. https://doi.org/10.18632/oncotarget.18846

  5. van der Schaft N, Schoufour JD, Nano J et al (2019) Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: The rotterdam study. Eur J Epidemiol 34:853–861. https://doi.org/10.1007/s10654-019-00548-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun H, Zhao H, Yan Z, Liu X, Yin P, Zhang J (2021) Protective role and molecular mechanism of action of Nesfatin-1 against high glucose-induced inflammation, oxidative stress and apoptosis in retinal epithelial cells. Exp Ther Med 22(2):833. https://doi.org/10.3892/etm.2021.10265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9(4):315–327. https://doi.org/10.1007/s11154-008-9090-4

    Article  CAS  PubMed  Google Scholar 

  8. Eshaq RS, Wright WS, Harris NR (2014) Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy. Redox Biol 2:661–666. https://doi.org/10.1016/j.redox.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kahya MC, Nazıroğlu M, Övey İS (2017) Modulation of diabetes-induced oxidative stress, apoptosis, and Ca2+ entry through TRPM2 and TRPV1 channels in dorsal root Ganglion and hippocampus of diabetic rats by melatonin and selenium. Mol Neurobiol 54(3):2345–2360. https://doi.org/10.1007/s12035-016-9727-3

    Article  CAS  PubMed  Google Scholar 

  10. Park J, Kim H, Park SY et al (2014) Tonicity-responsive enhancer binding protein regulates the expression of aldose reductase and protein kinase C δ in a mouse model of diabetic retinopathy. Exp Eye Res 122:13–19. https://doi.org/10.1016/j.exer.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  11. Tang WH, Cheng WT, Kravtsov GM et al (2010) Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am J Physiol Cell Physiol 299(3):C643–C653. https://doi.org/10.1152/ajpcell.00137.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahmoud AM, Abd El-Twab SM, Abdel-Reheim ES (2017) Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: the underlying mechanism. Eur J Nutr 56(4):1671–1684. https://doi.org/10.1007/s00394-016-1214-0

    Article  CAS  PubMed  Google Scholar 

  13. Al-Kharashi AS (2018) Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol 32(4):318–323. https://doi.org/10.1016/j.sjopt.2018.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nazıroğlu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075. https://doi.org/10.1007/s11064-012-0850-x

    Article  CAS  PubMed  Google Scholar 

  15. Koivisto AP, Belvisi MG, Gaudet R, Szallasi A. (2021) Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 2021 15:1–19. Epub ahead of print. https://doi.org/10.1038/s41573-021-00268-4

  16. Hara Y, Wakamori M, Ishii M et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/s1097-2765(01)00438-5

    Article  CAS  PubMed  Google Scholar 

  17. Nazıroğlu M, Lückhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res 33(7):1256–1262. https://doi.org/10.1007/s11064-007-9577-5

    Article  CAS  PubMed  Google Scholar 

  18. Uchida K, Tominaga M (2014) The role of TRPM2 in pancreatic β-cells and the development of diabetes. Cell Calcium 56(5):332–339. https://doi.org/10.1016/j.ceca.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  19. Yosida M, Dezaki K, Uchida K et al (2014) Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion. Diabetes 63(10):3394–3403. https://doi.org/10.2337/db13-1868

    Article  CAS  PubMed  Google Scholar 

  20. Sözbir E, Nazıroğlu M (2016) Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab Brain Dis 31(2):385–393. https://doi.org/10.1007/s11011-015-9769-7

    Article  CAS  PubMed  Google Scholar 

  21. Saadane A, Du Y, Thoreson WB et al (2021) Photoreceptor cell calcium dysregulation and calpain activation promote pathogenic photoreceptor oxidative stress and inflammation in prodromal diabetic retinopathy. Am J Pathol 191(10):1805–1821. https://doi.org/10.1016/j.ajpath.2021.06.006

    Article  CAS  PubMed  Google Scholar 

  22. Shoorei H, Khaki A, Khaki AA, Hemmati AA, Moghimian M, Shokoohi M (2019) The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomed Pharmacother 111:568–578. https://doi.org/10.1016/j.biopha.2018.12.054

    Article  CAS  PubMed  Google Scholar 

  23. Custódio JB, Ribeiro MV, Silva FS, Machado M, Sousa MC (2011) The essential oils component p-cymene induces proton leak through Fo-ATP synthase and uncoupling of mitochondrial respiration. J Exp Pharmacol 3:69–76. https://doi.org/10.2147/JEP.S16387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gatica S, Eltit F, Santibanez JF, Varela D, Cabello-Verrugio C, Simon F (2019) (2019) Expression suppression and activity inhibition of TRPM7 regulate cytokine production and multiple organ dysfunction syndrome during endotoxemia: a new target for sepsis. Curr Mol Med 19(8):547–559. https://doi.org/10.2174/1566524019666190709181726

    Article  CAS  PubMed  Google Scholar 

  25. Deng W, Lu H, Teng J (2013) Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci 51(3):813–819. https://doi.org/10.1007/s12031-013-0069-6

    Article  CAS  PubMed  Google Scholar 

  26. Arkali G, Aksakal M, Kaya ŞÖ (2021) Protective effects of carvacrol against diabetes-induced reproductive damage in male rats: modulation of Nrf2/HO-1 signalling pathway and inhibition of Nf-kB-mediated testicular apoptosis and inflammation. Andrologia 53(2):e13899. https://doi.org/10.1111/and.13899

    Article  CAS  PubMed  Google Scholar 

  27. Hong DK, Choi BY, Kho AR et al (2018) Carvacrol attenuates hippocampal neuronal death after global cerebral ischemia via inhibition of transient receptor potential melastatin 7. Cells 7(12):231. https://doi.org/10.3390/cells7120231

    Article  CAS  PubMed Central  Google Scholar 

  28. Xie P, Fujii I, Zhao J, Shinohara M, Matsukura M (2012) A novel polysaccharide compound derived from algae extracts protects retinal pigment epithelial cells from high glucose-induced oxidative damage in vitro. Biol Pharm Bull 35(9):1447–1453. https://doi.org/10.1248/bpb.b110706

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Li R, Wang L, Liao D, Zhang W, Wang J (2021) Proanthocyanidins attenuate the high glucose-induced damage of retinal pigment epithelial cells by attenuating oxidative stress and inhibiting activation of the NLRP3 inflammasome. J Biochem Mol Toxicol 35(9):e22845. https://doi.org/10.1002/jbt.22845

    Article  CAS  PubMed  Google Scholar 

  30. Meléndez García R, Arredondo Zamarripa D, Arnold E et al (2016) Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death. EBioMedicine 7:35–49. https://doi.org/10.1016/j.ebiom.2016.03.048

    Article  PubMed  PubMed Central  Google Scholar 

  31. Özkaya D, Nazıroğlu M (2021) Bevacizumab induces oxidative cytotoxicity and apoptosis via TRPM2 channel activation in retinal pigment epithelial cells: Protective role of glutathione. Graefes Arch Clin Exp Ophthalmol 259(6):1539–1554. https://doi.org/10.1007/s00417-021-05074-7

    Article  CAS  PubMed  Google Scholar 

  32. Özkaya D, Shu X, Nazıroğlu M (2021) Deletion of mitochondrial translocator protein (TSPO) gene decreases oxidative retinal pigment epithelial cell death via modulation of TRPM2 channel. Biology (Basel) 10(5):382. https://doi.org/10.3390/biology10050382

    Article  CAS  Google Scholar 

  33. Chenet AL, Duarte AR, de Almeida FJS, Andrade CMB, de Oliveira MR (2019) Carvacrol depends on heme oxygenase-1 (HO-1) to exert antioxidant, anti-inflammatory, and mitochondria-related protection in the human neuroblastoma SH-SY5Y cells line exposed to hydrogen peroxide. Neurochem Res. 44(4):884–896. https://doi.org/10.1007/s11064-019-02724-5

  34. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278(13):11002–11006. https://doi.org/10.1074/jbc.M210810200

    Article  CAS  PubMed  Google Scholar 

  35. Özkaya D, Nazıroğlu M, Vanyorek L, Muhamad S (2021) Involvement of TRPM2 channel on hypoxia-induced oxidative injury, inflammation, and cell death in retinal pigment epithelial cells: modulator action of selenium nanoparticles. Biol Trace Elem Res 199(4):1356–1369. https://doi.org/10.1007/s12011-020-02556-3

    Article  CAS  PubMed  Google Scholar 

  36. Bejarano I, Espino J, Marchena AM et al (2011) Melatonin enhances hydrogen peroxide-induced apoptosis in human promyelocytic leukaemia HL-60 cells. Mol Cell Biochem 353(1–2):167–176. https://doi.org/10.1007/s11010-011-0783-8

    Article  CAS  PubMed  Google Scholar 

  37. Kalyanaraman B, Darley-Usmar V, Davies KJ et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  38. Sivandzade F, Bhalerao A, Cucullo L. (2019) Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 9(1): e3128. https://doi.org/10.21769/BioProtoc

  39. Özkaya D, Nazıroğlu M, Armağan A et al (2011) Dietary vitamin C and E modulates oxidative stress induced-kidney and lens injury in diabetic aged male rats through modulating glucose homeostasis and antioxidant systems. Cell Biochem Funct 29(4):287–293

    Article  Google Scholar 

  40. Chang YS, Lin CF, Wu CL et al (2011) Mechanisms underlying benzyl alcohol cytotoxicity (triamcinolone acetonide preservative) in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52(7):4214–4222. https://doi.org/10.1167/iovs.10-6058

    Article  CAS  PubMed  Google Scholar 

  41. Lin YC, Shen ZR, Song XH, Liu X, Yao K (2018) Comparative transcriptomic analysis reveals adriamycin-induced apoptosis via p53 signaling pathway in retinal pigment epithelial cells. J Zhejiang Univ Sci B 19(12):895–909. https://doi.org/10.1631/jzus.B1800408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song J, Lee SC, Kim SS et al (2004) Zn2+-induced cell death is mediated by the induction of intracellular ROS in ARPE-19 cells. Curr Eye Res 28(3):195–201. https://doi.org/10.1076/ceyr.28.3.195.26251

    Article  CAS  PubMed  Google Scholar 

  43. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  Google Scholar 

  44. Perraud AL, Fleig A, Dunn CA et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595–599. https://doi.org/10.1038/35079100

    Article  CAS  PubMed  Google Scholar 

  45. Han D, Wu X, Liu L, Shu W, Huang Z (2018) Sodium tanshinone IIA sulfonate protects ARPE-19 cells against oxidative stress by inhibiting autophagy and apoptosis. Sci Rep 8(1):15137. https://doi.org/10.1038/s41598-018-33552-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nazıroğlu M. (2021) A novel antagonist of TRPM2 and TRPV4 channels: carvacrol. Metab Brain Dis. https://doi.org/10.1007/s11011-021-00887-1

  47. Cui ZW, Xie ZX, Wang BF et al (2015) Carvacrol protects neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway. Acta Pharmacol Sin 36(12):1426–1436. https://doi.org/10.1038/aps.2015.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Armağan HH, Nazıroğlu M (2021) Glutathione depletion induces oxidative injury and apoptosis via TRPM2 channel activation in renal collecting duct cells. Chem Biol Interact 334:109306. https://doi.org/10.1016/j.cbi.2020.109306

    Article  CAS  PubMed  Google Scholar 

  49. Belrose JC, Xie YF, Gierszewski LJ, MacDonald JF, Jackson MF (2012) Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain 5:11. https://doi.org/10.1186/1756-6606-5-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baser KHC (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3120

    Article  CAS  Google Scholar 

  51. Lyu Q, Ludwig IS, Kooten PJS, Sijts AJAM, Rutten VPMG, van Eden W, Broere F (2020) Leucinostatin acts as a co-inducer for heat shock protein 70 in cultured canine retinal pigment epithelial cells. Cell Stress Chaperones 25(2):235–243. https://doi.org/10.1007/s12192-019-01066-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Y, Mai Y, Qiu X et al (2020) Effect of long-term treatment of Carvacrol on glucose metabolism in Streptozotocin-induced diabetic mice. BMC Complement Med Ther 20(1):142. https://doi.org/10.1186/s12906-020-02937-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaymaz A, Ulaş F, Çetinkaya A, Erimşah S (2021) Investigating the effects of carvacrol in rats using oxygen-induced retinopathy model. Indian J Ophthalmol 69(5):1219–1223. https://doi.org/10.4103/ijo.IJO_1935_20

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Xinhua Shu for his valuable contributions to preparation of ARPE19 cells.

Funding

The study was performed with a financial support of the company (BSN Health) (Project No: 2021–03. Project owner: Dr. Hatice Daldal).

Author information

Authors and Affiliations

Authors

Contributions

H Daldal: The design, data analyses, manuscript preparation, conception, and critical revision of present study. M. Nazıroğlu: The analyses and preparation of figures in the manuscript. The manuscript submission was approved by both authors.

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

Ethical approval

Samples from human participants and experimental animals were not used in the present study by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daldal, H., Nazıroğlu, M. Carvacrol protects the ARPE19 retinal pigment epithelial cells against high glucose-induced oxidative stress, apoptosis, and inflammation by suppressing the TRPM2 channel signaling pathways. Graefes Arch Clin Exp Ophthalmol 260, 2567–2583 (2022). https://doi.org/10.1007/s00417-022-05731-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05731-5

Keywords

Navigation