Skip to main content

Advertisement

Log in

Refractive status, biometric components, and functional outcomes of patients with threshold retinopathy of prematurity: systemic review and a 17-year longitudinal study

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Objective

To assess the long-term refractive status, visual outcome, astigmatism, and the change in biometric optic components in older adolescents up to age 17 years with threshold retinopathy of prematurity (ROP) treated with diode laser.

Methods

A retrospective, longitudinal study in which cycloplegic refraction, keratometry, and the biometric measurement of optic components were performed on 28 consecutive preterm eyes with laser-treated threshold ROP at age 17 years. The study results were statistically analysed and compared with age-matched full-term control.

Results

All patients with ROP had myopia (average spherical equivalent of − 6.35 D, ranges from − 1.25 to − 12.38 D), and 12 eyes (43%) were highly myopic (spherical equivalent <  − 6.0 D). Threshold ROP eyes exhibited a significantly poorer visual acuity (P < 0.001), greater cylinder refractive error (P < 0.001), higher corneal astigmatism (P < 0.001), and flatter horizontal corneal curvature (P = 0.01) compared with age-matched controls. Biometric optic components analysis revealed a significant shallower anterior chamber depth (P < 0.001), thicker lens (P < 0.001), and shorter axial length (P = 0.021) in laser-treated ROP eyes compared with age-matched controls.

Conclusions

In this 17-year longitudinal study, a higher prevalence of myopia and astigmatism was observed in laser-treated threshold ROP eyes compared with age-matched control eyes. Myopia and astigmatism in laser-treated ROP eyes typically progress through adolescence after school age. Therefore, we recommend that preterm patients with laser-treated threshold ROP should attend regular follow-up not only for refractive status but also for structural change of anterior segment until their adolescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. (2020) VISION-2020, No. SEA-Blindness-1, WHO Report of the Expert Group Meeting for South-East Asia.

  2. Hansen ED, Hartnett ME (2019) A review of treatment for retinopathy of prematurity. Expert review of ophthalmology 14(2):73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Early Treatment for Retinopathy of Prematurity Cooperative Group (2003) Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol 121:1684–1696

    Article  Google Scholar 

  4. Liang J (2019) Systematic review and meta-analysis of the negative outcomes of retinopathy of prematurity treated with laser photocoagulation. Eur J Ophthalmol 29(2):223–228

    Article  PubMed  Google Scholar 

  5. Wang Y, Pi LH, Zhao RL et al (2020) Refractive status and optical components of premature babies with or without retinopathy of prematurity at 7 years old. Translational Pediatrics 9(2):108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Darlow BA, Elder MJ, Kimber B et al (2018) Vision in former very low birthweight young adults with and without retinopathy of prematurity compared with term born controls: the NZ 1986 VLBW follow-up study. Br J Ophthalmol 102(8):1041–1046

    Article  PubMed  Google Scholar 

  7. Quinn GE, Dobson V, Davitt BV et al (2008) Early Treatment for Retinopathy of Prematurity Cooperative Group: progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: findings to 3 years of age. Ophthalmology 115(6):1058–1064

    Article  PubMed  Google Scholar 

  8. Wang J, Ren X, Shen L et al (2013) Development of refractive error in individual children with regressed retinopathy of prematurity. Invest Ophthalmol Vis Sci 54(9):6018–6024

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moskowitz A, Hansen RM, Fulton AB (2016) Retinal, visual, and refractive development in retinopathy of prematurity. Eye and brain 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuo HK, Sun IT, Chung MY et al (2015) Refractive error in patients with retinopathy of prematurity after laser photocoagulation or bevacizumab monotherapy. Ophthalmologica 234(4):211–217

    Article  CAS  PubMed  Google Scholar 

  11. Chen TC, Tsai TH, Shih YF et al (2010) Long-term evaluation of refractive status and optical components in eyes of children born prematurely. Invest Ophthalmol Vis Sci 51(12):6140–6148

    Article  PubMed  Google Scholar 

  12. Ruan L, Shan HD, Liu XZ et al (2015) Refractive status of Chinese with laser-treated retinopathy of prematurity. Optom Vis Sci 92(4 Suppl):S3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang SD, Zhang GM (2020) Laser therapy versus intravitreal injection of anti-VEGF agents in monotherapy of ROP: a meta-analysis. Int J Ophthalmol 13(5):806

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tan QQ, Christiansen SP, Wang J (2019) Development of refractive error in children treated for retinopathy of prematurity with anti-vascular endothelial growth factor (anti-VEGF) agents: a meta-analysis and systematic review. PLoS ONE 14(12):e0225643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwang CK, Hubbard GB, Hutchinson AK et al (2015) Outcomes after intravitreal bevacizumab versus laser photocoagulation for retinopathy of prematurity: a 5-year retrospective analysis. Ophthalmology 122(5):1008–1015

    Article  PubMed  Google Scholar 

  16. Geloneck MM, Chuang AZ, Clark WL et al (2014) Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA ophthalmology 132(11):1327–1333

    Article  PubMed  Google Scholar 

  17. Young-Zvandasara T, Popiela M, Preston H et al (2020) Is the severity of refractive error dependent on the quantity and extent of retinal laser ablation for retinopathy of prematurity. Eye 34(4):740–745

    Article  PubMed  Google Scholar 

  18. Anand N, Blair MP, Greenwald MJ et al (2019) Refractive outcomes comparing primary laser to primary bevacizumab with delayed laser for type 1 ROP. Journal of American Association for Pediatric Ophthalmology and Strabismus 23(2):88–101

    Article  PubMed  Google Scholar 

  19. Baker PS, Tasman W (2008) Myopia in adults with retinopathy of prematurity. Am J Ophthalmol 145(6):1090–1094

    Article  PubMed  Google Scholar 

  20. Yang CS, Wang AG, Shih YF et al (2013) Astigmatism and biometric optic components of diode laser-treated threshold retinopathy of prematurity at 9 years of age. Eye 27(3):374–381

    Article  PubMed  Google Scholar 

  21. An international classification of retinopathy of prematurity (1984) The Committee for the Classification of Retinopathy of Prematurity. Arch Ophthalmol 102(8):1130–1134

    Article  Google Scholar 

  22. Palmer EA. (1990) Results of U.S. randomized clinical trial of cryotherapy for ROP (CRYO-ROP). Doc Ophthalmol 74(3): p. 245–51.

  23. Gunay M, Sekeroglu MA, Bardak H et al (2016) Evaluation of refractive errors and ocular biometric outcomes after intravitreal bevacizumab for retinopathy of prematurity. Strabismus 24(2):84–88

    Article  PubMed  Google Scholar 

  24. Chen YH, Chen SN, Lien RI, Shih CP, Chao AN, Chen KJ, Chuang CC (2014) Refractive errors after the use of bevacizumab for the treatment of retinopathy of prematurity: 2-year outcomes. Eye 28(9):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McLoone EM, O’Keefe M, McLoone SF, et al. (2006) Long-term refractive and biometric outcomes following diode laser therapy for retinopathy of prematurity. Journal of American Association for Pediatric Ophthalmology and Strabismus 0(5), 454–459.

  26. Wu WC, Lin RI, Shih CP et al (2012) Visual acuity, optical components, and macular abnormalities in patients with a history of retinopathy of prematurity. Ophthalmology 119(9):1907–1916

    Article  PubMed  Google Scholar 

  27. Kaur S, Sukhija J, Katoch D et al (2017) Refractive and ocular biometric profile of children with a history of laser treatment for retinopathy of prematurity. Indian J Ophthalmol 65(9):835

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gordon RA, Donzis PB (1985) Refractive development of the human eye. Arch Ophthalmol 103(6):785–789

    Article  CAS  PubMed  Google Scholar 

  29. Sahni J, Subhedar NV, Clark D (2005) Treated threshold stage 3 versus spontaneously regressed subthreshold stage 3 retinopathy of prematurity: a study of motility, refractive, and anatomical outcomes at 6 months and 36 months. Br J Ophthalmol 89(2):154–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhawan A, Dogra M, Vinekar A et al (2008) Structural sequelae and refractive outcome after successful laser treatment for threshold retinopathy of prematurity. J Pediatr Ophthalmol Strabismus 45(6):356–361

    Article  PubMed  Google Scholar 

  31. Axer-Siegel R, Maharshak I, Snir M et al (2008) Diode laser treatment of retinopathy of prematurity: anatomical and refractive outcomes. Retina 28(6):839–846

    Article  PubMed  Google Scholar 

  32. Harder BC, Schlichtenbrede FC, von-Baltz S, et al (2013) Intravitreal bevacizumab for retinopathy of prematurity: refractive error results. Am J Ophthalmol 155(6):1119–1124

    Article  CAS  PubMed  Google Scholar 

  33. Lin LK, Shih YT, Hsiao CT et al (2004) Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Annals-Academy of Medicine Singapore 33(1):27–33

    CAS  Google Scholar 

  34. Katoch D, Sanghi G, Dogra MR et al (2011) Structural sequelae and refractive outcome 1 year after laser treatment for type 1 prethreshold retinopathy of prematurity in Asian Indian eyes. Indian J Ophthalmol 59(6):423

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lue CL, Hansen RM, Reisner DS et al (1995) The course of myopia in children with mild retinopathy of prematurity. Vision Res 35(9):1329–1335

    Article  CAS  PubMed  Google Scholar 

  36. Gordon RA, Donzis PB (1986) Myopia associated with retionopathy of prematurity. Ophthalmology 93(12):1593–1598

    Article  CAS  PubMed  Google Scholar 

  37. Quinn GE, Dobson V, Siatkowski RM et al (2001) Does cryotherapy affect refractive error?: results from treated versus control eyes in the cryotherapy for retinopathy of prematurity trial. Ophthalmology 108(2):343–347

    Article  CAS  PubMed  Google Scholar 

  38. Kim JY, Kwak SI, Yu YS (1992) Myopia in premature infants at the age of 6 months. Korean J Ophthalmol 6(1):44–49

    Article  CAS  PubMed  Google Scholar 

  39. Knight-Nanan DM, O’Keefe M (1996) Refractive outcome in eyes with retinopathy of prematurity treated with cryotherapy or diode laser: 3 year follow up. Br J Ophthalmol 80(11):998–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quinn GE, Dobson V, Davitt BV et al (2013) Early Treatment for Retinopathy of Prematurity Cooperative Group: progression of myopia and high myopia in the Early Treatment for Retinopathy of Prematurity study: findings at 4 to 6 years of age. Journal of American Association for Pediatric Ophthalmology and Strabismus 17(2):124–128

    Article  PubMed  Google Scholar 

  41. Davitt BV, Dobson V, Good WV et al (2005) Early Treatment for Retinopathy of Prematurity Cooperative Group: prevalence of myopia at 9 months in infants with high-risk prethreshold retinopathy of prematurity. Ophthalmology 112(9):1564–1568

    Article  PubMed  Google Scholar 

  42. Warrasak S, Nawarutkulchai S, Sinsawat P (2012) Functional result and visual outcome in early versus conventional treatment of retinopathy of prematurity. J Med Assoc Thai 95(suppl 4):S107–S115

    PubMed  Google Scholar 

  43. Chen YC, Chen SN (2020) Foveal microvasculature, refractive errors, optical biometry and their correlations in school-aged children with retinopathy of prematurity after intravitreal antivascular endothelial growth factors or laser photocoagulation. Br J Ophthalmol 104(5):691–696

    Article  PubMed  Google Scholar 

  44. Lee YS, See LC, Chang SH et al (2018) Macular structures, optical components, and visual acuity in preschool children after intravitreal bevacizumab or laser treatment. Am J Ophthalmol 192:20–30

    Article  PubMed  Google Scholar 

  45. Chen YH, Chen SN, Lien RI et al (2014) Refractive errors after the use of bevacizumab for the treatment of retinopathy of prematurity: 2-year outcomes. Eye 28(9):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Isaac M, Mireskandari K, Tehrani N (2015) Treatment of type 1 retinopathy of prematurity with bevacizumab versus laser. Journal of American Association for Pediatric Ophthalmology and Strabismus 19(2):140–144

    Article  PubMed  Google Scholar 

  47. Choi MY, Park IK, Yu YS (2000) Long term refractive outcome in eyes of preterm infants with and without retinopathy of prematurity: comparison of keratometric value, axial length, anterior chamber depth, and lens thickness. Br J Ophthalmol 84(2):138–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia-Valenzuela E, Kaufman LM (2005) High myopia associated with retinopathy of prematurity is primarily lenticular. Journal of American Association for Pediatric Ophthalmology and Strabismus 9(2):121–128

    Article  PubMed  Google Scholar 

  49. Kent D, Pennie F, Laws D et al (2000) The influence of retinopathy of prematurity on ocular growth. Eye 14(1):23–29

    Article  PubMed  Google Scholar 

  50. Wu SC, Lee YS, Wu WC et al (2015) Acute angle-closure glaucoma in retinopathy of prematurity following pupil dilation. BMC Ophthalmol 15(1):1–3

    Article  Google Scholar 

  51. Chang SH, Lee YS, Wu SC et al (2017) Anterior chamber angle and anterior segment structure of eyes in children with early stages of retinopathy of prematurity. Am J Ophthalmol 179:46–54

    Article  PubMed  Google Scholar 

  52. Smith EL, Kee CS, Ramamirtham R et al (2005) Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci 46(11):3965–3972

    Article  PubMed  Google Scholar 

  53. Mueller B, Salchow DJ, Waffenschmidt E et al (2017) Treatment of type I ROP with intravitreal bevacizumab or laser photocoagulation according to retinal zone. Br J Ophthalmol 101(3):365–370

    CAS  PubMed  Google Scholar 

  54. Wu WC, Lien R, Liao PJ et al (2015) Serum levels of vascular endothelial growth factor and related factors after intravitreous bevacizumab injection for retinopathy of prematurity. JAMA ophthalmology 133(4):391–397

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Sue Yang.

Ethics declarations

Consent to participate

Informed consent was obtained in this study even though it is unnecessary for a retrospective study.

Research involving human participants

This research study was conducted retrospectively from data obtained for clinical purposes. The study design and protocol followed the guideline of the Helsinki Declaration and were approved by the Institutional Review Board of Taipei Veterans General Hospital.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, YB., Wang, AG., Yang, HY. et al. Refractive status, biometric components, and functional outcomes of patients with threshold retinopathy of prematurity: systemic review and a 17-year longitudinal study. Graefes Arch Clin Exp Ophthalmol 260, 3809–3816 (2022). https://doi.org/10.1007/s00417-022-05730-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05730-6

Keywords

Navigation