Skip to main content

Advertisement

Log in

Choroidal vascularity index in eyes with central macular atrophy secondary to age-related macular degeneration and Stargardt disease

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare macular atrophy (MA) secondary to age-related macular degeneration (AMD) and Stargardt disease (STGD) using the choroidal vascularity index (CVI).

Methods

In this multicentric retrospective study, two distinct cohorts were collected: patients with MA secondary to AMD and MA secondary to STGD. All patients were investigated using a multimodal imaging approach, including CVI in the subfoveal 1000 μm area. Of note, the CVI is not influenced by aging, which allows comparisons between different cohorts.

Results

Seventy eyes were included: 35 eyes of 35 patients (mean age 78 ± 7 years) in the AMD group and 35 eyes of 35 patients (mean age 41 ± 16 years, p < 0.001) in the STGD group. Choroidal thickness was significantly lower in the AMD group in comparison to the STGD group (151 ± 80 μm vs 353 ± 105 μm, p < 0.001). The total choroidal area (TCA) was significantly greater in the STGD group in comparison to the AMD group (1.734 ± 0.958 mm2 vs 0.538 ± 0.391 mm2, respectively, p < 0.001).

Interestingly, the CVI was significantly lower in AMD patients in comparison to STGD patients (27.322 ± 15.320% vs 49.880 ± 7.217%, respectively, p < 0.001), and this difference was confirmed in the subgroup of patients over 50 years old.

Conclusion

Our results corroborate the hypothesis that large choroidal vessels were impaired to a greater extent in AMD than in STGD. CVI may help in differentiating AMD from STGD in the presence of MA, better understanding of the pathogenesis, and monitoring of therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gune S, Abdelfattah NS, Karamat A et al (2020) Spectral-domain OCT-based prevalence and progression of macular atrophy in the HARBOR study for Neovascular age-related macular degeneration. Ophthalmology 127:523–532

    Article  PubMed  Google Scholar 

  2. Sacconi R, Corbelli E, Querques L et al (2017) A review of current and future management of geographic atrophy. Ophthalmol Ther 6:69–77

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Asp Med 33:295–317

    Article  CAS  Google Scholar 

  4. Querques G, Bandello F, Sacconi R et al (2017) Recent advances in the management of dry age-related macular degeneration: a review. F1000Res 6:245

  5. Sacconi R, Corbelli E, Borrelli E et al (2021) Choriocapillaris flow impairment could predict the enlargement of geographic atrophy lesion. Br J Ophthalmol 105:97–102

    Article  PubMed  Google Scholar 

  6. Sacconi R, Corbelli E, Carnevali A et al (2018) Optical coherence tomography angiography in geographic atrophy. Retina 38:2350–2355

    Article  PubMed  Google Scholar 

  7. Corbelli E, Sacconi R, Rabiolo A et al (2017) Optical coherence tomography angiography in the evaluation of geographic atrophy area extension. Invest Ophthalmol Vis Sci 58:5201–5208

    Article  PubMed  Google Scholar 

  8. Cideciyan AV, Aleman TS, Swider M et al (2004) Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet 13:525–534

    Article  CAS  PubMed  Google Scholar 

  9. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 97:7154–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klevering BJ, Deutman AF, Maugeri A et al (2005) The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefes Arch Clin Exp Ophthalmol 243:90–100

    Article  CAS  PubMed  Google Scholar 

  11. Wang DL, Agee J, Mazzola M et al (2019) Outer retinal thickness and fundus autofluorescence in geographic atrophy. Ophthalmol Retin 3:1035–1044

    Article  Google Scholar 

  12. Fish G, Grey R, Sehmi KS, Bird AC (1981) The dark choroid in posterior retinal dystrophies. Br J Ophthalmol 65:359–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giani A, Pellegrini M, Carini E et al (2012) The dark atrophy with indocyanine green angiography in stargardt disease. Investig Ophthalmol Vis Sci 53:3999–4004

    Article  Google Scholar 

  14. Pellegrini M, Acquistapace A, Oldani M et al (2016) Dark atrophy: an optical coherence tomography angiography study. Ophthalmology 123:1879–1886

    Article  PubMed  Google Scholar 

  15. Zhou H, Dai Y, Shi Y et al (2020) Age-related changes in choroidal thickness and the volume of vessels and stroma using swept-source OCT and fully automated algorithms. Ophthalmol Retin 4:204–215

    Article  Google Scholar 

  16. Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY (2016) Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep 6:21090

  17. Goud A, Singh SR, Sahoo NK et al (2019) New insights on choroidal vascularity: a comprehensive topographic approach. Invest Ophthalmol Vis Sci 60:3563–3569

    Article  PubMed  Google Scholar 

  18. Koçak N, Subaşı M, Yeter V (2021) Effects of age and binarising area on choroidal vascularity index in healthy eyes: an optical coherence tomography study. Int Ophthalmol 41:825–834

    Article  PubMed  Google Scholar 

  19. Nivison-Smith L, Khandelwal N, Tong J, Mahajan S, Kalloniatis M, Agrawal R (2020) Normal aging changes in the choroidal angioarchitecture of the macula. Sci Rep 10:10810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Breher K, Terry L, Bower T, Wahl S (2020) Choroidal biomarkers: a repeatability and topographical comparison of choroidal thickness and choroidal vascularity index in healthy eyes. Transl Vis Sci Technol 9(11):8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fishman GA, Stone EM, Grover S et al (1999) Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol 117:504–510

    Article  CAS  PubMed  Google Scholar 

  22. Sonoda S, Sakamoto T, Yamashita T et al (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159:1123-1131.e1

  23. Sonoda S, Sakamoto T, Yamashita T et al (2014) Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Investig Ophthalmol Vis Sci 55:3893–3898

    Article  Google Scholar 

  24. Agrawal R, Wei X, Goud A, Vupparaboina KK, Jana S, Chhablani J (2017) Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol 95:e770–e775

    Article  PubMed  Google Scholar 

  25. Battaglia Parodi M, Sacconi R, Romano F, Bandello F (2019) Hyperreflective foci in Stargardt disease: 1-year follow-up. Graefes Arch Clin Exp Ophthalmol 257:41–48

    Article  CAS  PubMed  Google Scholar 

  26. Schwoerer J, Secrétan M, Zografos L, Piguet B (2000) Indocyanine green angiography in fundus flavimaculatus. Ophthalmologica 214:240–245

    Article  CAS  PubMed  Google Scholar 

  27. Iovino C, Pellegrini M, Bernabei F et al (2020) Choroidal vascularity index: an in-depth analysis of this novel optical coherence tomography parameter. J Clin Med 9:595

    Article  CAS  PubMed Central  Google Scholar 

  28. Iovino C, Au A, Hilely A et al (2019) Evaluation of the choroid in eyes with retinitis Pigmentosa and cystoid macular edema. Invest Ophthalmol Vis Sci 60:5000–5006

    Article  PubMed  Google Scholar 

  29. Rizzo S, Savastano A, Finocchio L et al (2018) Choroidal vascularity index changes after vitreomacular surgery. Acta Ophthalmol 96:e950–e955

    Article  PubMed  Google Scholar 

  30. Wei X, Mishra C, Kannan NB et al (2019) Choroidal structural analysis and vascularity index in retinal dystrophies. Acta Ophthalmol 97:e116–e121

    Article  PubMed  Google Scholar 

  31. Wei X, Ting DSW, Ng WY, Khandelwal N, Agrawal R, Cheung CMG (2017) Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina 37:1120–1125

    Article  PubMed  Google Scholar 

  32. Giannaccare G, Pellegrini M, Sebastiani S et al (2020) Choroidal vascularity index quantification in geographic atrophy using BINARIZATION of enhanced-depth imaging optical coherence tomographic scans. Retina 40:960–965

    Article  PubMed  Google Scholar 

  33. Ratra D, Tan R, Jaishankar D et al (2018) Choroidal structural changes and vascularity index in STARGARDT disease on swept source optical coherence tomography. Retina 38:2395–2400

    Article  PubMed  Google Scholar 

  34. MacHalińska A, Kawa MP, Marlicz W, MacHaliński B (2012) Complement system activation and endothelial dysfunction in patients with age-related macular degeneration (AMD): possible relationship between AMD and atherosclerosis. Acta Opthalmol 90:695–703

    Article  Google Scholar 

  35. Nunes RP, Rosa PR, Giani A et al (2015) Choroidal thickness in eyes with central geographic atrophy secondary to stargardt disease and age-related macular degeneration. Ophthalmic Surg Lasers Imaging Retin 46:814–822

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Querques.

Ethics declarations

Potential conflicts

The authors have no proprietary/financial interest regarding the publication of this study.

Eleonora Corbelli, Marco Battista, Daniela Bacherini, Alexandra Miere, Eliana Costanzo, Giovanna Vella, Lucia Ziccardi, Andrea Sodi and Stanislao Rizzo have nothing to disclose.

Riccardo Sacconi reports personal fees from Novartis (Basel, Switzerland), Zeiss (Dublin, USA) outside the submitted work.

Enrico Borrelli reports personal fees from Novartis (Basel, Switzerland), Zeiss (Dublin, USA) outside the submitted work.

Mariacristina Parravano reports personal fees from Allergan Inc. (Irvine, California,USA), Bayer Shering-Pharma (Berlin, Germany), Novartis (Basel, Switzerland), Zeiss (Dublin, USA) outside the submitted work.

Eric Souied reports personal fees from Allergan Inc. (Irvine, California,USA), Bayer Shering-Pharma (Berlin, Germany), Novartis (Basel, Switzerland), Roche (Basel, Switzerland) outside the submitted work.

Francesco Bandello reports personal fees from Alcon (Fort Worth,Texas,USA), Alimera Sciences (Alpharetta, Georgia, USA), Allergan Inc. (Irvine, California,USA), Farmila-Thea (Clermont-Ferrand, France), Bayer Shering-Pharma (Berlin, Germany), Bausch And Lomb (Rochester, New York, USA), Genentech (San Francisco, California, USA), Hoffmann-La-Roche (Basel, Switzerland), NovagaliPharma (Évry, France), Novartis (Basel, Switzerland), Sanofi-Aventis (Paris, France), Thrombogenics (Heverlee,Belgium), Zeiss (Dublin, USA) outside the submitted work.

Giuseppe Querques reports personal fees from Alimera Sciences (Alpharetta, Georgia, USA), Allergan Inc. (Irvine, California,USA), Amgen (Thousand Oaks, USA), Heidelberg (Germany), KBH (Chengdu, China), LEH Pharma (London, UK), Lumithera (Poulsbo, USA), Novartis (Basel, Switzerland), Bayer Shering-Pharma (Berlin, Germany), Sandoz (Berlin, Germany), Sifi (Catania, Italy), Soof-Fidia (Albano, Italy), Zeiss (Dublin, USA) outside the submitted work.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the San Raffaelle Ethics Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbelli, E., Sacconi, R., Battista, M. et al. Choroidal vascularity index in eyes with central macular atrophy secondary to age-related macular degeneration and Stargardt disease. Graefes Arch Clin Exp Ophthalmol 260, 1525–1534 (2022). https://doi.org/10.1007/s00417-021-05337-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05337-3

Keywords

Navigation