Skip to main content

Advertisement

Log in

Choriocapillaris flow deficit associated with intraretinal hyperreflective foci in intermediate age-related macular degeneration

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the choriocapillaris (CC) flow deficit (FD) beneath drusen associated with overlying intraretinal hyperreflective foci (HRF).

Methods

Patients with intermediate age-related macular degeneration (AMD) who had structural spectral-domain optical coherence tomography (SD-OCT) and OCT angiography (OCTA) using the Cirrus HD-OCT with AngioPlex software were retrospectively evaluated. A 6 × 6-mm-volume scan was used for the SD-OCT and OCTA. Post-imaging processing steps included generation of drusen map, identification of HRF, and generation of a signal-compensated CC slab prior to binarization and CC FD computation. The CC OCTA image was aligned with the drusen + HRF map to define regions of interest for CC FD measurement. The CC was quantified below drusen with and without overlying HRF and within a 150-μm-wide ring surrounding the drusen (unaffected by potential HRF-related shadowing), and across the entire 6 × 6 macular region.

Results

Fifty-three eyes with intermediate AMD were included, 25 eyes with HRF, and 28 eyes with no HRF. The mean ± SD FD% over the whole 6 × 6 macular region was 41.1 ± 3.4 in eyes with HRF compared with 39.5 ± 3.5 in eyes without HRF (p = 0.001). The mean ± SD CC FD% below drusen with HRF (54.4 ± 9.3) was significantly greater than below drusen without HRF (49.6 ± 9.5; p = 0.001). There was a strong positive correlation between the quantity of HRF and the extent of the CC FD (Pearson correlation = 0.81).

Conclusion

Choriocapillaris flow deficits appear to be more severe in eyes with HRF and in particular directly below HRF. As HRF are thought to represent a higher risk or more advanced feature of intermediate AMD, these findings highlight the relationship between the severity of CC FD and overall severity of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bressler NM, Bressler SB, Congdon NG et al (2003) Potential public health impact of age-related eye disease study results: AREDS report no. 11. Arch Ophthalmol 121:1621–1624. https://doi.org/10.1001/archopht.121.11.1621

    Article  PubMed  Google Scholar 

  2. Eye TA, Study D, States U (2013) AREDS report no. 8. 119:

  3. Jack LS, Sadiq MA, Do DV, Nguyen QD (2015) Emixustat and lampalizumab: potential therapeutic options for geographic atrophy. Dev Ophthalmol 55:302–309. https://doi.org/10.1159/000438954

    Article  PubMed  Google Scholar 

  4. Ouyang Y, Heussen FM, Hariri A et al (2013) Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology. https://doi.org/10.1016/j.ophtha.2013.05.029

  5. Ho J, Witkin AJ, Liu J et al (2011) Documentation of intraretinal retinal pigment epithelium migration via high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 118:687–693. https://doi.org/10.1016/j.ophtha.2010.08.010

    Article  PubMed  Google Scholar 

  6. Schmidt-Erfurth U, Waldstein SM, Klimscha S et al (2018) Prediction of individual disease conversion in early AMD using artificial intelligence. Investig Ophthalmol Vis Sci 59:3199–3208. https://doi.org/10.1167/iovs.18-24106

    Article  CAS  Google Scholar 

  7. Christenbury JG, Folgar FA, O’Connell RV et al (2013) Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology 120:1038–1045. https://doi.org/10.1016/j.ophtha.2012.10.018

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lei J, Balasubramanian S, Abdelfattah NS et al (2017) Proposal of a simple optical coherence tomography-based scoring system for progression of age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 255:1551–1558. https://doi.org/10.1007/s00417-017-3693-y

    Article  PubMed  Google Scholar 

  9. Nassisi M, Fan W, Shi Y et al (2018) Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression. Investig Ophthalmol Vis Sci 59:3431–3439. https://doi.org/10.1167/iovs.18-24143

    Article  CAS  Google Scholar 

  10. Arya M, Sabrosa AS, Duker JS, Waheed NK (2018) Choriocapillaris changes in dry age-related macular degeneration and geographic atrophy: a review. Eye Vis (London, England) 5:22. https://doi.org/10.1186/s40662-018-0118-x

    Article  Google Scholar 

  11. Waheed NK, Moult EM, Fujimoto JG, Rosenfeld PJ (2016) Optical coherence tomography angiography of dry age-related macular degeneration. Dev Ophthalmol 56:91–100. https://doi.org/10.1159/000442784

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moreira-Neto CA, Moult EM, Fujimoto JG et al (2018) Choriocapillaris loss in advanced age-related macular degeneration. J Ophthalmol 2018:8125267. https://doi.org/10.1155/2018/8125267

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moult EM, Waheed NK, Novais EA et al (2016) Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina 36(Suppl 1):S2–S11. https://doi.org/10.1097/IAE.0000000000001287

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lane M, Moult EM, Novais EA et al (2016) Visualizing the choriocapillaris under drusen: comparing 1050-nm swept-source versus 840-nm spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT585–OCT590. https://doi.org/10.1167/iovs.15-18915

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roisman L, Zhang Q, Wang RK et al (2016) Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmology 123:1309–1319. https://doi.org/10.1016/j.ophtha.2016.01.044

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nassisi M, Baghdasaryan E, Borrelli E et al (2019) Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. PLoS One 14:1–14. https://doi.org/10.1371/journal.pone.0212563

    Article  CAS  Google Scholar 

  17. Borrelli E, Shi Y, Uji A et al (2018) Topographic analysis of the choriocapillaris in intermediate age-related macular degeneration. Am J Ophthalmol 196:34–43. https://doi.org/10.1016/j.ajo.2018.08.014

    Article  PubMed  Google Scholar 

  18. Nassisi M, Shi Y, Fan W et al (2018) Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study. Br J Ophthalmol:1–7. https://doi.org/10.1136/bjophthalmol-2018-312643

  19. Alagorie AR, Verma A, Nassisi M, Sadda SR (2019) Quantitative assessment of choriocapillaris flow deficits in eyes with advanced age-related macular degeneration versus healthy eyes. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2019.04.037

  20. Thulliez M, Zhang Q, Shi Y et al (2019) Correlations between choriocapillaris flow deficits around geographic atrophy and enlargement rates based on swept-source OCT imaging. Ophthalmol Retin 3:478–488. https://doi.org/10.1016/j.oret.2019.01.024

    Article  Google Scholar 

  21. Müller PL, Pfau M, Möller PT et al (2018) Choroidal flow signal in late-onset Stargardt disease and age-related macular degeneration: an OCT-angiography study. Invest Ophthalmol Vis Sci 59:AMD122–AMD131. https://doi.org/10.1167/iovs.18-23819

    Article  PubMed  Google Scholar 

  22. Nassisi M, Tepelus T, Nittala MG, Sadda SR (2019) Choriocapillaris flow impairment predicts the development and enlargement of drusen. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-019-04403-1

  23. Bird A, Chakravarthy U, Wilkinson CP et al (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120:844–851. https://doi.org/10.1016/j.ophtha.2012.10.036

    Article  PubMed  Google Scholar 

  24. Rosenfeld PJ, Durbin MK, Roisman L et al (2016) ZEISS Angioplex™ spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol 56:18–29. https://doi.org/10.1159/000442773

    Article  PubMed  Google Scholar 

  25. Spaide RF (2016) Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol 170:58–67. https://doi.org/10.1016/j.ajo.2016.07.023

    Article  PubMed  Google Scholar 

  26. Nassisi M, Lei J, Abdelfattah NS et al (2019) OCT risk factors for development of late age-related macular degeneration in the fellow eyes of patients enrolled in the HARBOR study. Ophthalmology. https://doi.org/10.1016/j.ophtha.2019.05.016

  27. Zhang Q, Zheng F, Motulsky EH et al (2018) A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. Investig Ophthalmol Vis Sci 59:203–211. https://doi.org/10.1167/iovs.17-22953

    Article  Google Scholar 

  28. Nassisi M, Baghdasaryan E, Tepelus T et al (2018) Topographic distribution of choriocapillaris flow deficits in healthy eyes. PLoS One 13:1–13. https://doi.org/10.1371/journal.pone.0207638

    Article  CAS  Google Scholar 

  29. Chu Z, Gregori G, Rosenfeld PJ, Wang RK (2019) Quantification of choriocapillaris with OCTA: a comparison study. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2019.07.003

  30. Borrelli E, Lonngi M, Balasubramanian S et al (2018) Macular microvascular networks in healthy pediatric subjects. Retina. https://doi.org/10.1097/IAE.0000000000002123

  31. Borrelli E, Uji A, Sarraf D, Sadda SR (2017) Alterations in the choriocapillaris in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 58:4792–4798. https://doi.org/10.1167/iovs.17-22360

    Article  PubMed  Google Scholar 

  32. Pieroni CG, Witkin AJ, Ko TH et al (2006) Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 90:191–197. https://doi.org/10.1136/bjo.2005.076612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fleckenstein M, Charbel Issa P, Helb H-M et al (2008) High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 49:4137–4144. https://doi.org/10.1167/iovs.08-1967

    Article  PubMed  Google Scholar 

  34. Mitsuhiro MRKH, Eguchi S, Yamashita H (2003) Regulation mechanisms of retinal pigment epithelial cell migration by the TGF-beta superfamily. Acta Ophthalmol Scand 81:630–638

    Article  CAS  Google Scholar 

  35. Jin M, He S, Worpel V et al (2000) Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-alpha. Invest Ophthalmol Vis Sci 41:4324–4332

    PubMed  CAS  Google Scholar 

  36. Leuschen JN, Schuman SG, Winter KP et al (2013) Spectral-domain optical coherence tomography characteristics of intermediate age-related macular degeneration. Ophthalmology 120:140–150. https://doi.org/10.1016/j.ophtha.2012.07.004

    Article  PubMed  Google Scholar 

  37. Zheng F, Zhang Q, Shi Y et al (2019) Age-dependent changes in the macular choriocapillaris of normal eyes imaged with swept-source optical coherence tomography angiography. Am J Ophthalmol 200:110–122. https://doi.org/10.1016/j.ajo.2018.12.025

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nesper PL, Soetikno BT, Fawzi AA (2017) Choriocapillaris nonperfusion is associated with poor visual acuity in eyes with reticular pseudodrusen. Am J Ophthalmol 174:42–55. https://doi.org/10.1016/j.ajo.2016.10.005

    Article  PubMed  Google Scholar 

  39. Dhrami-Gavazi E, Balaratnasingam C, Lee W, Freund KB (2015) Type 1 neovascularization may confer resistance to geographic atrophy amongst eyes treated for neovascular age-related macular degeneration. Int J Retin Vitr 1:15. https://doi.org/10.1186/s40942-015-0015-6

    Article  Google Scholar 

  40. Lei J, Pei C, Wen C, Abdelfattah NS (2018) Repeatability and reproducibility of quantification of superficial Peri-papillary capillaries by four different optical coherence tomography angiography devices. Sci Rep 8:17866. https://doi.org/10.1038/s41598-018-36279-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas R. Sadda.

Ethics declarations

Conflict of interest

Dr. Sadda receives research funding from Allergan, Carl Zeiss Meditec, Genentech, Optos, and Topcon and serves as a consultant to Allergan, CenterVue, Genentech, Heidelberg Engineering, Iconic, Novartis, Optos, and Oxurion. Other authors have no financial disclosures.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of California Los Angeles and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiosano, L., Byon, I., Alagorie, A.R. et al. Choriocapillaris flow deficit associated with intraretinal hyperreflective foci in intermediate age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 258, 2353–2362 (2020). https://doi.org/10.1007/s00417-020-04837-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-04837-y

Keywords

Navigation