Skip to main content

Advertisement

Log in

Characterization of the retina-induced relaxation in mice

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The retinal relaxing factor (RRF) is a continuously released factor from the retina that causes vasorelaxation, the identity and potential role in physiology of which remain largely unknown. Experiments were performed to find out whether the RRF-induced relaxation is influenced by serotonin, glutamate, L-cysteine, the cytochrome P450 pathway, the cyclooxygenase pathway, or oxidative stress. In addition, the sensitivity of retinal and non-retinal arteries towards the RRF was compared.

Methods

In vitro tension measurements were performed on isolated mouse femoral or bovine retinal arteries to study the vasorelaxing effect of the RRF, induced by mouse or bovine retinas.

Results

The presence of serotonin, glutamate, or L-cysteine did not alter the RRF-induced relaxation. Increasing oxidative stress by hydroquinone and diethyldithiocarbamic acid sodium salt enhanced the RRF response. Inhibition of the cytochrome P450 or the cyclooxygenase pathway did not cause any alteration. Surprisingly, the RRF-induced relaxation was enhanced by the presence of flufenamic acid or carbenoxolone. Furthermore, bringing retinal tissue in close contact with retinal or non-retinal arteries induced comparable relaxations.

Conclusions

Serotonin, glutamate, L-cysteine, the cytochrome P450, and the cyclooxygenase pathway do not influence the RRF-induced relaxation and the RRF-induced relaxation seems to be resistant to oxidative stress. The mechanism responsible for the enhanced RRF-induced relaxation in the presence of flufenamic acid or carbenoxolone remains elusive and the RRF does not show more effectivity on retinal arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delaey C, Van de Voorde J (1998) Retinal arterial tone is controlled by a retinal-derived relaxing factor. Circ Res 83(7):714–720

    Article  PubMed  CAS  Google Scholar 

  2. Vanden Daele L, Boydens C, Pauwels B, Van de Voorde J (2017) The retinal relaxing factor: update on an enigmatic regulator of the retinal circulation. Invest Ophthalmol Vis Sci 58(3):1702–1708. https://doi.org/10.1167/iovs.16-20904

    Article  CAS  Google Scholar 

  3. Brandstatter JH, Koulen P, Wassle H (1998) Diversity of glutamate receptors in the mammalian retina. Vis Res 38(10):1385–1397

    Article  PubMed  CAS  Google Scholar 

  4. Cornide-Petronio ME, Anadon R, Barreiro-Iglesias A, Rodicio MC (2015) Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey. Exp Eye Res 135:81–87. https://doi.org/10.1016/j.exer.2015.04.017

    Article  PubMed  CAS  Google Scholar 

  5. Ghai K, Zelinka C, Fischer AJ (2009) Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina. J Neurochem 111(1):1–14. https://doi.org/10.1111/j.1471-4159.2009.06270.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Takir S, Ortakoylu GZ, Toprak A, Uydes-Dogan BS (2015) NaHS induces relaxation response in prostaglandin F(2alpha) precontracted bovine retinal arteries partially via K(v) and K(ir) channels. Exp Eye Res 132:190–197. https://doi.org/10.1016/j.exer.2015.02.002

    Article  PubMed  CAS  Google Scholar 

  7. Winther AK, Dalsgaard T, Hedegaard ER, Simonsen U (2015) Involvement of hydrogen sulfide in perivascular and hypoxia-induced inhibition of endothelin contraction in porcine retinal arterioles. Nitric Oxide 50:1–9. https://doi.org/10.1016/j.niox.2015.07.002

    Article  PubMed  CAS  Google Scholar 

  8. Newman EA (2015) Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters. Philos Trans R Soc Lond Ser B Biol Sci 370(1672). https://doi.org/10.1098/rstb.2014.0195

  9. Holmgaard K, Aalkjaer C, Lambert JD, Hessellund A, Bek T (2008) The relaxing effect of perivascular tissue on porcine retinal arterioles in vitro is mimicked by N-methyl-D-aspartate and is blocked by prostaglandin synthesis inhibition. Acta Ophthalmol 86(1):26–33. https://doi.org/10.1111/j.1600-0420.2007.01010.x

    Article  PubMed  CAS  Google Scholar 

  10. Boussery K, Delaey C, Van de Voorde J (2002) Rat retinal tissue releases a vasorelaxing factor. Invest Ophthalmol Vis Sci 43(10):3279–3286

    PubMed  Google Scholar 

  11. Boussery K, Franki AS, Delaey C, Van de Voorde J (2002) A vasorelaxing factor is released from mouse retinal tissue. Ophthalmic Res 34(3):172–177. https://doi.org/10.1159/000063662

    Article  PubMed  CAS  Google Scholar 

  12. Lee YC, Chang HH, Liu CH, Chen MF, Chen PY, Kuo JS, Lee TJ (2010) Methyl palmitate: a potent vasodilator released in the retina. Invest Ophthalmol Vis Sci 51(9):4746–4753. https://doi.org/10.1167/iovs.09-5132

    Article  PubMed  Google Scholar 

  13. Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Asp Med 33(4):399–417. https://doi.org/10.1016/j.mam.2012.03.009

    Article  CAS  Google Scholar 

  14. Kowluru RA, Chan PS (2007) Oxidative stress and diabetic retinopathy. Exp Diabetes Res. https://doi.org/10.1155/2007/43603

  15. Takir S, Uydes-Dogan BS, Ozdemir O (2011) Retina evokes biphasic relaxations in retinal artery unrelated to endothelium, K(V), K(ATP), K(Ca) channels and methyl palmitate. Microvasc Res 81(3):295–302. https://doi.org/10.1016/j.mvr.2011.02.007

    Article  PubMed  CAS  Google Scholar 

  16. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322(5901):590–594. https://doi.org/10.1126/science.1163518

    Article  PubMed  CAS  Google Scholar 

  17. LeMaistre JL, Sanders SA, Stobart MJ, Lu L, Knox JD, Anderson HD, Anderson CM (2012) Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab 32(3):537–547. https://doi.org/10.1038/jcbfm.2011.161

    Article  PubMed  CAS  Google Scholar 

  18. Kulkarni M, Njie-Mbye YF, Okpobiri I, Zhao M, Opere CA, Ohia SE (2011) Endogenous production of hydrogen sulfide in isolated bovine eye. Neurochem Res 36(8):1540–1545. https://doi.org/10.1007/s11064-011-0482-6

    Article  PubMed  CAS  Google Scholar 

  19. Hobbs AJ, Tucker JF, Gibson A (1991) Differentiation by hydroquinone of relaxations induced by exogenous and endogenous nitrates in non-vascular smooth muscle: role of superoxide anions. Br J Pharmacol 104(3):645–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kelner MJ, Bagnell R, Hale B, Alexander NM (1989) Inactivation of intracellular copper-zinc superoxide dismutase by copper chelating agents without glutathione depletion and methemoglobin formation. Free Radic Biol Med 6(4):355–360

    Article  PubMed  CAS  Google Scholar 

  21. Vanden Daele L, Boydens C, Pauwels B, Van de Voorde J (2016) Vasorelaxing effect of resveratrol on bovine retinal arteries. Invest Ophthalmol Vis Sci 57(4):1655–1661. https://doi.org/10.1167/iovs.15-18369

    Article  CAS  Google Scholar 

  22. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26(11):2862–2870. https://doi.org/10.1523/JNEUROSCI.4048-05.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang MH, Brand-Schieber E, Zand BA, Nguyen X, Falck JR, Balu N, Schwartzman ML (1998) Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. J Pharmacol Exp Ther 284(3):966–973

    PubMed  CAS  Google Scholar 

  24. Guinamard R, Simard C, Del Negro C (2013) Flufenamic acid as an ion channel modulator. Pharmacol Ther 138(2):272–284. https://doi.org/10.1016/j.pharmthera.2013.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bencze M, Behuliak M, Vavrinova A, Zicha J (2015) Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat. Eur J Pharmacol 765:533–540. https://doi.org/10.1016/j.ejphar.2015.09.014

    Article  PubMed  CAS  Google Scholar 

  26. Gilliam JC, Wensel TG (2011) TRP channel gene expression in the mouse retina. Vis Res 51(23–24):2440–2452. https://doi.org/10.1016/j.visres.2011.10.009

    Article  PubMed  CAS  Google Scholar 

  27. Chi Y, Li K, Yan QJ, Koizumi S, Shi LY, Takahashi S, Zhu Y, Matsue H, Takeda M, Kitamura M, Yao J (2011) Nonsteroidal anti-inflammatory drug flufenamic acid is a potent activator of AMP-activated protein kinase. J Pharmacol Exp Ther 339(1):257–266. https://doi.org/10.1124/jpet.111.183020

    Article  PubMed  CAS  Google Scholar 

  28. Ge RL, Hu L, Tai YL, Xue F, Yuan L, Wei GT, Wang Y (2013) Flufenamic acid promotes angiogenesis through AMPK activation. Int J Oncol 42(6):1945–1950. https://doi.org/10.3892/ijo.2013.1891

    Article  PubMed  CAS  Google Scholar 

  29. Rae MG, Hilton J, Sharkey J (2012) Putative TRP channel antagonists, SKF 96365, flufenamic acid and 2-APB, are non-competitive antagonists at recombinant human alpha 1 beta 2 gamma 2 GABA(A) receptors. Neurochem Int 60(6):543–554. https://doi.org/10.1016/j.neuint.2012.02.014

    Article  PubMed  CAS  Google Scholar 

  30. Hinds K, Monaghan KP, Frolund B, McGeown JG, Curtis TM (2013) GABAergic control of arteriolar diameter in the rat retina. Invest Ophthalmol Vis Sci 54(10):6798–6805. https://doi.org/10.1167/iovs.13-12362

    Article  PubMed  CAS  Google Scholar 

  31. Liu YN, Zhang HR, Huang DY, Qi JL, Xu JX, Gao HX, Du XN, Gamper N, Zhang HL (2015) Characterization of the effects of Cl- channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl- channels. Pflugers Arch Eur J Physiol 467(7):1417–1430. https://doi.org/10.1007/s00424-014-1572-5

    Article  CAS  Google Scholar 

  32. Qi JL, Wang Y, Liu YN, Zhang F, Guan BC, Zhang HL (2014) Development and validation of HTS assay for screening the calcium-activated chloride channel modulators in TMEM16A stably expressed CHO cells. Anal Bioanal Chem 406(6):1713–1721. https://doi.org/10.1007/s00216-013-7550-5

    Article  PubMed  CAS  Google Scholar 

  33. Yang YD, Cho HW, Koo JY, Tak MH, Cho YY, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455(7217):1210–U1236. https://doi.org/10.1038/nature07313

    Article  PubMed  CAS  Google Scholar 

  34. Heinze C, Seniuk A, Sokolov MV, Huebner AK, Klementowicz AE, Szijarto IA, Schleifenbaum J, Vitzthum H, Gollasch M, Ehmke H, Schroeder BC, Hubner CA (2014) Disruption of vascular Ca2+-activated chloride currents lowers blood pressure. J Clin Invest 124(2):675–686. https://doi.org/10.1172/Jci70025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pan F, Mills SL, Massey SC (2007) Screening of gap junction antagonists on dye coupling in the rabbit retina. Vis Neurosci 24(4):609–618. https://doi.org/10.1017/S0952523807070472

    Article  PubMed  PubMed Central  Google Scholar 

  36. Srinivas M, Spray DC (2003) Closure of gap junction channels by arylaminobenzoates. Mol Pharmacol 63(6):1389–1397. https://doi.org/10.1124/mol.63.6.1389

    Article  PubMed  CAS  Google Scholar 

  37. Tao L, Harris AL (2007) 2-aminoethoxydiphenyl borate directly inhibits channels composed of connexin26 and/or connexin32. Mol Pharmacol 71(2):570–579. https://doi.org/10.1124/mol.106.027508

    Article  PubMed  CAS  Google Scholar 

  38. Yang Y, Cao MH, Wang Q, Yuan DD, Li L, Tao L (2011) The effects of 2-aminoethoxydiphenyl borate and diphenylboronic anhydride on gap junctions composed of connexin43 in TM4 Sertoli cells. Biol Pharm Bull 34(9):1390–1397

    Article  PubMed  CAS  Google Scholar 

  39. Verselis VK, Srinivas M (2013) Connexin channel modulators and their mechanisms of action. Neuropharmacology 75:517–524. https://doi.org/10.1016/j.neuropharm.2013.03.020

    Article  PubMed  CAS  Google Scholar 

  40. Mese G, Richard G, White TW (2007) Gap junctions: basic structure and function. J Invest Dermatol 127(11):2516–2524. https://doi.org/10.1038/sj.jid.5700770

    Article  PubMed  CAS  Google Scholar 

  41. Dahl G, Qiu F, Wang JJ (2013) The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology 75:583–593. https://doi.org/10.1016/j.neuropharm.2013.02.019

    Article  PubMed  CAS  Google Scholar 

  42. Ma WH, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328(2):409–418. https://doi.org/10.1124/jpet.108.146365

    Article  PubMed  CAS  Google Scholar 

  43. Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5(3):193–197

    Article  CAS  Google Scholar 

  44. Meens MJ, Kwak BR, Duffy HS (2015) Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci 72(15):2779–2792. https://doi.org/10.1007/s00018-015-1959-2

    Article  PubMed  CAS  Google Scholar 

  45. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082. https://doi.org/10.1038/sj.emboj.7601378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293(3):C1112–C1119. https://doi.org/10.1152/ajpcell.00097.2007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lies Vancraeynest and Tom Vanthuyne for the excellent technical assistance. We also thank the slaughterhouse Flanders Meat group in Zele to provide us bovine eyes.

Funding

This work is supported by the Fund of Research in Ophthalmology (FRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Van de Voorde.

Electronic supplementary material

ESM 1

(DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanden Daele, L., Boydens, C. & Van de Voorde, J. Characterization of the retina-induced relaxation in mice. Graefes Arch Clin Exp Ophthalmol 256, 1905–1912 (2018). https://doi.org/10.1007/s00417-018-4096-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-4096-4

Keywords

Navigation