Skip to main content
Log in

Development and validation of HTS assay for screening the calcium-activated chloride channel modulators in TMEM16A stably expressed CHO cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Calcium-activated chloride channels (CaCCs), for example TMEM16A, are widely expressed in a variety of tissues and are involved in many important physiological functions. We developed and validated an atomic absorption spectroscopy (AAS)-based detection system for high-throughput screening (HTS) of CaCC modulators. With this assay, Cl flux from CHO cells stably transfected with TMEM16A is assayed indirectly, by measuring excess silver ions (Ag+) in the supernatant of AgCl precipitates. The screening process involved four steps: (1) TMEM16A CHO cells were incubated in high-K+ and high-Cl buffer with test compounds, and with ionomycin as Ca2+ ionophore, for 12 min; (2) cells were washed with a low-K+, Cl-free and Ca2+-free buffer; (3) CaCC/TMEM16A were activated in high-K+, Cl-free buffer with ionomycin (10 μmol L−1) for 12 min; and (4) excess Ag+ concentration was measured using an ion channel reader (ICR, an AAS system). The assay can be used to screen CaCC activators and inhibitors at the same time. With this assay, positive control drugs, including NPPB, CaCCinh-A01, flufenamic acid (Flu) and Eact, all had good concentration-dependent effects on CaCC/TMEM16A. NPPB and CaCCinh-A01 inhibited the CaCC/TMEM16A currents completely at 300 μmol L−1, with IC50 values of 39.35 ± 4.72 μmol L−1 and 6.35 ± 0.27 μmol L−1, respectively; and Eact, activated CaCC/TMEM16A, with an EC50 value of 3.92 ± 0.87 μmol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berg J, Yang H, Jan LY (2012) Ca2 + −activated Cl- channels at a glance. J Cell Sci 125(Pt 6):1367–1371

    Article  CAS  Google Scholar 

  2. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  CAS  Google Scholar 

  3. Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un)loved? Proc Am Thorac Soc 1(1):22–27

    Article  CAS  Google Scholar 

  4. Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8(2):153–171

    Article  CAS  Google Scholar 

  5. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455(7217):1210–1215

    Article  CAS  Google Scholar 

  6. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322(5901):590–594

    Article  CAS  Google Scholar 

  7. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134(6):1019–1029

    Article  CAS  Google Scholar 

  8. Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458(6):1023–1038

    Article  CAS  Google Scholar 

  9. Stohr H, Heisig JB, Benz PM, Schoberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29(21):6809–6818

    Article  Google Scholar 

  10. Scudieri P, Sondo E, Caci E, Ravazzolo R, Galietta LJV (2013) TMEM16A–TMEM16B chimaeras to investigate the structure–function relationship of calcium-activated chloride channels. Biochem J 452:443–455

    Article  CAS  Google Scholar 

  11. Lee CH, Liang CW, Espinosa I (2010) The utility of discovered on gastrointestinal stromal tumor 1 (DOG1) antibody in surgical pathology-the GIST of it. Adv Anat Pathol 17(3):222–232

    Article  CAS  Google Scholar 

  12. Namkung W, Phuan PW, Verkman AS (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 286(3):2365–2374

    Article  CAS  Google Scholar 

  13. Oh SJ, Hwang SJ, Jung J, Yu K, Kim J, Choi JY, Hartzell HC, Roh EJ, Lee CJ (2013) MONNA, a Potent and Selective Blocker for Transmembrane Protein with Unknown Function 16/Anoctamin-1. Mol Pharmacol 84(5):726–735

    Article  CAS  Google Scholar 

  14. Kiss L, Bennett PB, Uebele VN, Koblan KS, Kane SA, Neagle B, Schroeder K (2003) High throughput ion-channel pharmacology: planar-array-based voltage clamp. Assay Drug Dev Technol 1(1 Pt 2):127–135

    Article  CAS  Google Scholar 

  15. Schroeder K, Neagle B, Trezise DJ, Worley J (2003) Ionworks HT: a new high-throughput electrophysiology measurement platform. J Biomol Screen 8(1):50–64

    Article  CAS  Google Scholar 

  16. Zheng W, Spencer RH, Kiss L (2004) High throughput assay technologies for ion channel drug discovery. Assay Drug Dev Technol 2(5):543–552

    Article  CAS  Google Scholar 

  17. Smith AJ, Alder L, Silk J, Adkins C, Fletcher AE, Scales T, Kerby J, Marshall G, Wafford KA, McKernan RM, Atack JR (2001) Effect of alpha subunit on allosteric modulation of ion channel function in stably expressed human recombinant gamma–aminobutyric acid(A) receptors determined using (36)Cl ion flux. Mol Pharmacol 59(5):1108–1118

    CAS  Google Scholar 

  18. Norez C, Heda GD, Jensen T, Kogan I, Hughes LK, Auzanneau C, Derand R, Bulteau-Pignoux L, Li C, Ramjeesingh M, Li H, Sheppard DN, Bear CE, Riordan JR, Becq F (2004) Determination of CFTR chloride channel activity and pharmacology using radiotracer flux methods. J Cyst Fibros 3(Suppl 2):119–121

    Article  CAS  Google Scholar 

  19. Mansoura MK, Biwersi J, Ashlock MA, Verkman AS (1999) Fluorescent chloride indicators to assess the efficacy of CFTR cDNA delivery. Hum Gene Ther 10(6):861–875

    Article  CAS  Google Scholar 

  20. Galietta LV, Jayaraman S, Verkman AS (2001) Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am J Physiol Cell Physiol 281(5):C1734–C1742

    CAS  Google Scholar 

  21. Namkung W, Yao Z, Finkbeiner WE, Verkman AS (2011) Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB J 25(11):4048–4062

    Article  CAS  Google Scholar 

  22. Kumar S, Namkung W, Verkman AS, Sharma PK (2012) Novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids as calcium activated chloride channel inhibitors. Bioorg Med Chem 20(14):4237–4244

    Article  CAS  Google Scholar 

  23. Jin BJ, Ko EA, Namkung W, Verkman AS (2013) Microfluidics platform for single-shot dose–response analysis of chloride channel-modulating compounds. Lab Chip 13(19):3862–3867

    Google Scholar 

  24. Molokanova E, Savchenko A (2008) Bright future of optical assays for ion channel drug discovery. Drug Discov Today 13(1–2):14–22

    Article  CAS  Google Scholar 

  25. Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knopfel T (2008) Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol 36(1–4):53–67

    Article  CAS  Google Scholar 

  26. Gill S, Gill R, Lee SS, Hesketh JC, Fedida D, Rezazadeh S, Stankovich L, Liang D (2003) Flux assays in high throughput screening of ion channels in drug discovery. Assay Drug Dev Technol 1(5):709–717

    Article  CAS  Google Scholar 

  27. Jia C, Qi J, Zhang F, Mi Y, Zhang X, Chen X, Liu L, Du X, Zhang H (2011) Activation of KCNQ2/3 potassium channels by novel pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives. Pharmacology 87(5–6):297–310

    Article  CAS  Google Scholar 

  28. Qi J, Zhang F, Mi Y, Fu Y, Xu W, Zhang D, Wu Y, Du X, Jia Q, Wang K, Zhang H (2011) Design, synthesis and biological activity of pyrazolo[1,5-a]pyrimidin–7(4H)-ones as novel Kv7/KCNQ potassium channel activators. Eur J Med Chem 46(3):934–943

    Article  CAS  Google Scholar 

  29. Gill S, Gill R, Xie Y, Wicks D, Liang D (2006) Development and validation of HTS flux assay for endogenously expressed chloride channels in a CHO-K1 cell line. Assay Drug Dev Technol 4(1):65–71

    Article  CAS  Google Scholar 

  30. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4(2):67–73

    Article  Google Scholar 

  31. Huang F, Wong X, Jan LY (2012) International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 64(1):1–15

    Article  CAS  Google Scholar 

  32. Bash R, Rubovitch V, Gafni M, Sarne Y (2003) The stimulatory effect of cannabinoids on calcium uptake is mediated by Gs GTP-binding proteins and cAMP formation. Neurosignals 12(1):39–44

    Article  CAS  Google Scholar 

  33. Mason MJ, Grinstein S (1993) Ionomycin activates electrogenic Ca2+ influx in rat thymic lymphocytes. Biochem J 296(Pt 1):33–39

    CAS  Google Scholar 

  34. Lacinova L (2005) Voltage-dependent calcium channels. Gen Physiol Biophys 24(Suppl 1):1–78

    CAS  Google Scholar 

  35. De La Fuente R, Namkung W, Mills A, Verkman AS (2008) Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol 73(3):758–768

    Article  Google Scholar 

Download references

Acknowledgments

This work supported by the National Natural Science Foundation of China (31270882 to HZ), the National Basic Research Program of China (2013CB531302 to HZ) and the Science Foundation of Hebei Province, China (H2013206048, 20130462 and YQ2013033 to J.Q).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Wang, Y., Liu, Y. et al. Development and validation of HTS assay for screening the calcium-activated chloride channel modulators in TMEM16A stably expressed CHO cells. Anal Bioanal Chem 406, 1713–1721 (2014). https://doi.org/10.1007/s00216-013-7550-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7550-5

Keywords

Navigation