Skip to main content

Advertisement

Log in

Calf melanin immunomodulates RPE cell attachment to extracellular matrix protein

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

It is widely accepted that RPE melanin has a protective effect against oxidative damage in RPE cells. It is possible that an additional protective characteristic of melanin is the ability to modulate RPE cell immune response. In this study, in vitro modeling was used to probe the relationship between RPE pigmentation and immune response by monitoring IL-6 expression and secretion in calf melanin pigmented ARPE-19 cells seeded onto glycated extracellular matrix as a stressor.

Methods

ARPE-19 cells were left unpigmented or were pigmented with either calf melanin or latex beads, and were then seeded onto RPE-derived extracellular matrix (ECM) or tissue culture-treated plates (no ECM). ECMs were modified by glycation. IL-6 expression was measured using qPCR and IL-6 secretion was determined using an ELISA, both at 30 min and 24 h after seeding. MTT assay was used to quantify cell attachment to glycated matrices 30 min after seeding. In unpigmented ARPE-19 cells, rate of cell attachment to substrate was monitored for 60 min after seeding using a hemacytometer to count unattached cells. Additionally, cell viability was evaluated using the Neutral Red assay 24 h after seeding.

Results

A significant increase in IL-6 expression was observed in calf melanin pigmented cells versus latex bead and unpigmented controls (p < 0.0001) 30 min after seeding onto ECM. Twenty-four hours after seeding, a significant decrease in IL-6 expression was observed in calf melanin pigmented cells (p < 0.0001) versus controls, implicating down-regulation of the cytokine. Additionally, calf melanin pigmented cell populations showed significant increase in attachment compared to unpigmented controls on either no ECM or unmodified ECM.

Conclusions

Pigmentation of RPE cells with calf melanin resulted in significant changes in IL-6 expression regardless of ECM modification, in vitro. These findings suggest that melanin in the RPE may participate in immune response modulation in the retina with particular regard to cell attachment to protein substrates. The results of this study further implicate the role of chemical changes to melanin in regulating inflammation in retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zinn K, Marmor M (1979) The retinal pigment epithelium. Harvard University Press, Cambridge

    Google Scholar 

  2. Zhou R, Caspi RR (2010) Ocular immune privilege. F1000 Biol Rep 2:1–3. https://doi.org/10.3410/B2-3

    Article  Google Scholar 

  3. Detrick B, Hooks JJ (2010) Immune regulation in the retina. Immunol Res 47:153–161. https://doi.org/10.1007/s12026-009-8146-1

    Article  PubMed  CAS  Google Scholar 

  4. Curcio CA, Johnson M (2013) Structure, function, and pathology of Bruch’s membrane. In: Ryan SJ, Schachat AP, Wilkinson CP, Hinton DR, Sadda S, Wiedemann P (eds) Retina, Vol. 1, part 2: basic science and translation to therapy, 5th edn. Elsevier, London, pp 466–481

    Google Scholar 

  5. Sun K, Cai H, Tezel TH, Paik D, Gaillard ER, Del Priore LV (2007) Bruch’s membrane aging decreases phagocytosis of outer segments by retinal pigment epithelium. Mol Vis 13:2310–2319

    PubMed  Google Scholar 

  6. Glenn JV, Mahaffy H, Wu K, Smith G, Nagai R, Simpson DA, Boulton ME, Stitt AW (2009) Advanced glycation end product (AGE) accumulation on Bruch’s membrane: links to age-related RPE dysfunction. Invest Ophthalmol Vis Sci 50:441–451. https://doi.org/10.1167/iovs.08-1724

    Article  PubMed  Google Scholar 

  7. Wang Z, Dillon J, Gaillard ER (2006) Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol 82:474–479. https://doi.org/10.1562/2005-10-21-RA-725

    Article  PubMed  CAS  Google Scholar 

  8. Seagle BL, Kourous AR, Yasuhiro K, Elzbieta GM, Kasra RA, Norris JR (2005) Melanin photoprotection in the human retinal pigment epithelium and its correlation with light-induced cell apoptosis. Proc Natl Acad Sci U S A 102:8978–8983. https://doi.org/10.1073/pnas.0501971102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Seagle BL, Gasyna EM, Mieler WF, Norris JR (2006) Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis. Proc Natl Acad Sci U S A 103:16644–16648. https://doi.org/10.1073/pnas.0605986103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Burke JM, Kaczara P, Skumatz CM, Zareba M, Raciti MW, Sarna T (2011) Dynamic analysis reveal cytoprotection by RPE melanosomes against non-photic stress. Mol Vis 17:2864–2877

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Carr RE, Sigel IM (1979) The retinal pigment epithelium in ocular albinism. In: The retinal pigment epithelium. Harvard University Press, Cambridge, pp 413–423

    Google Scholar 

  12. Sarna T (1992) Properties and function of the ocular melanin—a photobiophysical view. J Photochem Photobiol B 12:215–258. https://doi.org/10.1016/1011-1344(92)85027-R

    Article  PubMed  CAS  Google Scholar 

  13. Smith-Thomas L, Richardson P, Thody AJ, Graham A, Palmer I, Flemming L, Parsons MA, Rennie IG, MacNeil S (1996) Human ocular melanocytes and retinal pigment epithelial cells differ in their melanogenic properties in vivo and in vitro. Curr Eye Res 15:1079–1091. https://doi.org/10.3109/02713689608995139

    Article  PubMed  CAS  Google Scholar 

  14. Sarna T, Burke JM, Korytowski W, Rozanowska M, Skumatz CM, Zareba A, Zareba M (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76:89–98. https://doi.org/10.1016/S0014-4835(02)00247-6

    Article  PubMed  CAS  Google Scholar 

  15. Zadlo A, Burke JM, Sarna T (2009) Effect of untreated and photobleached bovine RPE melanosomes on the photoinduced peroxidation of lipids. Photochem Photobiol Sci 8:830–837. https://doi.org/10.1039/b901820d

    Article  PubMed  CAS  Google Scholar 

  16. Zareba M, Szewczyk G, Sarna T, Hong L, Simon JD, Henry MM, Burke JM (2006) Effects of Photodegradation on the physical and antioxidant properties of melanosomes isolated from retinal pigment epithelium. Photochem Photobiol 82:1024–1029. https://doi.org/10.1562/2006-03-08-RA-836

    Article  PubMed  CAS  Google Scholar 

  17. Ito S, Kikuta M, Koike S, Szewczyk G, Sarna M, Zadlo A, Sarna T, Wakamatsu K (2016) Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method. Pigment Cell Melanoma Res 29:340–351. https://doi.org/10.1111/pcmr.12469

    Article  PubMed  CAS  Google Scholar 

  18. Ito S, Pilat A, Gerwat W, Skumatz CM, Ito M, Kiyono A, Zadlo A, Nakanishi Y, Kolbe L, Burke JM, Sarna T, Wakamatsu K (2013) Photoaging of human retinal pigment epithelium is accompanied by oxidative modifications of its eumelanin. Pigment Cell Melanoma Res 26:357–366. https://doi.org/10.1111/pcmr.12078

    Article  PubMed  CAS  Google Scholar 

  19. Polosa A, Bessaklia H, Lachapelle P (2017) Light-induced retinopathy: young age protects more than ocular pigmentation. Curr Eye Res 42:924–935. https://doi.org/10.1080/02713683.2016.1255336

    Article  PubMed  Google Scholar 

  20. Zareba M, Skumatz CM, Sarna TJ, Burke JM (2014) Photic injury to cultured RPE varies among individual cells in proportion to their endogenous lipofuscin content as modulated by their melanosome content. Invest Ophthalmol Vis Sci 55:4982–4990. https://doi.org/10.1167/iovs.14-14310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Elner VM, Scales W, Elner SG, Danforth J, Kunkel SL, Strieter RM (1992) Interleukin-6 (IL-6) gene expression and secretion by cytokine-stimulated human retinal pigment epithelial cells. Exp Eye Res 54:361–368. https://doi.org/10.1016/0014-4835(92)90048-W

    Article  PubMed  CAS  Google Scholar 

  22. Benson MT, Shepherd L, Rees RC, Rennie IG (1992) Production of interleukin-6 by human retinal pigment epithelium in vitro and its regulation by other cytokines. Curr Eye Res 11:173–179. https://doi.org/10.3109/02713689208999529

    Article  PubMed  Google Scholar 

  23. Nishida T, Nakamura M, Mishima H, Otori T (1992) Interleukin 6 promotes epithelial migration by a fibronectin-dependent mechanism. J Cell Physiol 153:1–5. https://doi.org/10.1002/jcp.1041530102

    Article  PubMed  CAS  Google Scholar 

  24. Jovanovic M, Vicovac L (2009) Interleukin-6 stimulates cell migration, invasion and integrin expression in HTR-8/SVneo cell line. Placenta 30:320–328. https://doi.org/10.1016/j.placenta.2009.01.013

    Article  PubMed  CAS  Google Scholar 

  25. Hsu C, Chung Y (2006) Influence of Interleukin-6 on the invasiveness of human colorectal carcinoma. Anticancer Res 26:4607–4614

    PubMed  CAS  Google Scholar 

  26. Baynes JW (2001) The role of AGEs in aging: causation or correlation. Exp Gerontol 36:1527–1537. https://doi.org/10.1016/S0531-5565(01)00138-3

    Article  PubMed  CAS  Google Scholar 

  27. Thornalley PJ (1999) The clinical significance of glycation. Clin Lab 45:263–273

    CAS  Google Scholar 

  28. Basta G, Schmidt AM, De Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592. https://doi.org/10.1016/j.cardiores.2004.05.001

    Article  PubMed  CAS  Google Scholar 

  29. Monnier VM, Sell DR, Nagaraj RH, Miyata S, Grandhee S, Odetti P, Ibrahim SA (1992) Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 41:36–41. https://doi.org/10.2337/diab.41.2.S36

    Article  PubMed  CAS  Google Scholar 

  30. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product Pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40:775–779

    PubMed  CAS  Google Scholar 

  31. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–1632. https://doi.org/10.1001/archopht.116.12.1629

    Article  PubMed  CAS  Google Scholar 

  32. Howes KA, Liu Y, Dunaief JL, Miliam A, Frederick JM, Marks A, Baehr W (2004) Receptor for advanced glycation end products and age-related macular degeneration. Invest Ophthalmol Vis Sci 45:3713–3720. https://doi.org/10.1167/iovs.04-0404

    Article  PubMed  Google Scholar 

  33. Tian J, Ishibashi K, Ishibashi K, Reiser K, Grebe R, Biswal S, Gehlbach P, Handa JT (2005) Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. Proc Natl Acad Sci U S A 102:11846–11851. https://doi.org/10.1073/pnas.0504759102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ma W, Lee SE, Guo J, Qu W, Hudson BI, Schmidt AM, Barile GR (2007) RAGE ligand upregulation of VEGF secretion in ARPE-19 cells. Invest Opthalmol Vis Sci 48:1355–1361. https://doi.org/10.1167/iovs.06-0738

    Article  Google Scholar 

  35. Fields MA, Cai H, Bowrey HE, Moreira EF, Gooz MB, Kunchithapautham K, Gong J, Vought E, Del Priore LV (2015) Nitrite modifications of extracellular matrix alters CD46 expression and VEGF release in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 56:4231–4238. https://doi.org/10.1167/iovs.15-16438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lopez VM, Decatur CL, Stamer DW, Lynch RM, McKay BS (2008) L-DOPA is an endogenous ligand for OA1. PLoS Biol 6:e236. https://doi.org/10.1371/journal.pbio.0060236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Brilliant MH, Vaziri K, Connor TB, Schwartz SG, Carroll JJ, McCarty CA, Schrodi SJ, Hebbring SJ, Kishor KS, Flynn HW, Moshfeghi AA, Moshfeghi DM, Fini EM, McKay BS (2016) Mining retrospective data for virtual prospective drug repurposing: L-DOPA and age-related macular degeneration. Am J Med 129:292–298. https://doi.org/10.1016/j.amjmed.2015.10.015

    Article  PubMed  CAS  Google Scholar 

  38. Murdaugh LS, Dillon J, Gaillard ER (2009) Modifications to the basement membrane protein laminin using glycolaldehyde and A2E: a model for aging in Bruch’s membrane. Exp Eye Res 89:187–192. https://doi.org/10.1016/j.exer.2009.03.021

    Article  PubMed  CAS  Google Scholar 

  39. Thao MT, Gaillard ER (2016) The glycation of fibronectin by glycolaldehyde and methylglyoxal as a model for aging in Bruch’s membrane. Amino Acids 48:1631–1639. https://doi.org/10.1007/s00726-016-2222-3

    Article  PubMed  CAS  Google Scholar 

  40. Poliakov E, Srunnikova NV, Jiang J, Martinez B, Parikh T, Lakkaraju A, Thomas C, Brooks BP, Redmond TM (2014) Multiple A2E treatments lead to melanization of rod outer segment-challenged ARPE-19 cells. Mol Vis 20:285–300

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Hook JJ, Nagineni CN, Hooper LC, Hayashi K, Detrick B (2008) IFN-β provides immune-protection in the retina by inhibiting ICAM-1 and CXCL9 in retinal pigment epithelial cells. J Immunol 180:3789–3796. https://doi.org/10.4049/jimmunol.180.6.3789

    Article  Google Scholar 

  42. Ikeda Y, Yonemitsu Y, Onimaru M, Nakano T, Miyazaki M, Kohno R, Nakagawa K, Ueno A, Sueishi K, Ishibashi T (2006) The regulation of vascular endothelial growth factors (VEGF-A, -C, and -D) expression in the retinal pigment epithelium. Exp Eye Res 83:1031–1040. https://doi.org/10.1016/j.exer.2006.05.007

    Article  PubMed  CAS  Google Scholar 

  43. Planck SR, Dang TT, Graves D, Tara D, Ansel JC, Rosenbaum JT (1992) Retinal pigment epithelial cells secrete interleukin-6 in response to interleukin-1. Invest Ophthalmol Vis Sci 33:78–82

    PubMed  CAS  Google Scholar 

  44. Chong DY, Boehlke CS, Zheng Q, Zhang L, Han Y, Zacks DN (2008) Interleukin-6 as a photoreceptor neuroprotectant in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 49:3193–3200. https://doi.org/10.1167/iovs.07-1641

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leibinger M, Muller A, Gobrecht P, Diekmann H, Andreadaki A, Fischer D (2013) Interleukin-6 contribues to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis 4:e609. https://doi.org/10.1038/cddis.2013.126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–423. https://doi.org/10.1126/science.1110189

    Article  PubMed  CAS  Google Scholar 

  47. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY (2005) Complement factor H variant increase the risk of age-related macular degeneration. Science 308:419–420. https://doi.org/10.1126/science.1110359

    Article  PubMed  CAS  Google Scholar 

  48. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389. https://doi.org/10.1126/science.1109557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232. https://doi.org/10.1073/pnas.0501536102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hageman GS, Mullins RF (1999) Molecular composition of drusen as related to substructural phenotype. Mol Vis 5:28

    PubMed  CAS  Google Scholar 

  51. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431. https://doi.org/10.1016/S0002-9394(02)01624-0

    Article  PubMed  CAS  Google Scholar 

  52. Jonas JB, Tao Y, Neumaier M, Findeisen P (2012) Cytokine concentrations in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 90:e381–e388. https://doi.org/10.1111/j.1755-3768.2012.02414.x

    Article  PubMed  Google Scholar 

  53. Schraermeyer U, Koptiz J, Peters S, Henke-Fahle S, Blitgen-Heinecke P, Kokkinou D, Schwarz T, Bartz-Schmidt K (2006) Tyrosinase biosynthesis in adult mammalian retinal pigment epithelial cells. Exp Eye Res 83:315–321. https://doi.org/10.1016/j.exer.2005.12.015

    Article  PubMed  CAS  Google Scholar 

  54. Julien S, Kociok N, Kreppel F, Koptiz J, Kochanek S, Biesemeier A, Blitgen-Heineck P, Heiduschka P, Schraermeyer U (2007) Tyrosinase biosynthesis and trafficking in adult human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 245:1495–1505. https://doi.org/10.1007/s00417-007-0543-3

    Article  PubMed  CAS  Google Scholar 

  55. Aruta C, Giordano F, De Marzo A, Comitato A, Raposo G, Nandrot EF, Marigo V (2010) In vitro differentiation of retinal pigment epithelium from adult retinal stem cells. Pigment Cell Melanoma Res 24:233–240. https://doi.org/10.1111/j.1755-148X.2010.00793.x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Gaillard.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yacout, S.M., Elsawa, S.F. & Gaillard, E.R. Calf melanin immunomodulates RPE cell attachment to extracellular matrix protein. Graefes Arch Clin Exp Ophthalmol 256, 1883–1893 (2018). https://doi.org/10.1007/s00417-018-4083-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-4083-9

Keywords

Navigation