Skip to main content

Advertisement

Log in

Retinal VEGF levels correlate with ocular circulation measured by a laser speckle-micro system in an oxygen-induced retinopathy rat model

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

We used a Laser speckle flowgraphy (LSFG)-micro system to examine the relationship between ocular blood flow and retinal vascular endothelial growth factor (VEGF) at retinopathy onset in oxygen-induced ischemic retinopathy (OIR) model rats.

Methods

Sixteen 50/10 OIR rats were compared with 17 control rats reared in room air. In postnatal day 14 (P14) and P18 rats, we measured and analyzed the left eye’s mean blur rate (MBR) by setting a rubber band on the optic nerve head center, using the LSFG-Micro. At P18, the rats were sacrificed and their left-eye retinas were fixed, flat-mounted and stained with adenosine diphosphatase (ADPase). The right-eye retinas were homogenized; the lysate was centrifuged for an enzyme-linked immunosorbent assay (ELISA). The avascular area was measured as the percentage (%AVA) of the total retinal area. Retinal VEGF was measured by an ELISA.

Results

The examination’s reproducibility was good. Our multivariate linear mixed model analysis revealed significantly high MBRs in the OIR rats (p = 0.0017). In the P18 OIR rats, significant correlations were seen between the MBR and %AVA (r = 0.80, p = 0.0002) and between the MBR and VEGF (r = 0.76, p = 0.0006).

Conclusions

The LSFG-Micro provided reproducible blood flow measurements in neonatal rats. Because of the vitreous blood vessels, measurement of only the retinal vessels was not possible. However, the MBR was higher in the OIR rats than in the control rats, and the MBR and %AVA were correlated, as were the MBR and retinal VEGF. The MBR may thus serve as an indicator of OIR severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10:133–140. doi:10.1007/s10456-007-9066-0

    Article  PubMed  Google Scholar 

  2. Holland DR, Saunders RA, Kagemann LE, Bluestein EC, Hutchinson AK, Corson DW, Harris A (1999) Color doppler imaging of the central retinal artery in premature infants undergoing examination for retinopathy of prematurity. J AAPOS 3:194–198

    Article  CAS  PubMed  Google Scholar 

  3. Niwald A, Gralek M (2006) Evaluation of blood flow in the ophthalmic artery and central retinal artery in children with retinopathy of prematurity. Klin Ocz 108:32–35

    Google Scholar 

  4. Neely D, Harris A, Hynes E, McNulty L, McCranor L, Siesky B, Plager D, Sprunger D, Roberts G (2009) Longitudinal assessment of plus disease in retinopathy of prematurity using color Doppler imaging. J AAPOS 13:509–511. doi:10.1016/j.jaapos.2009.08.012

    Article  PubMed  Google Scholar 

  5. Hartenstein S, Muller B, Metze B, Czernik C, Buhrer C (2015) Blood flow assessed by color Doppler imaging in retinopathy of prematurity. J Perinatol 35:745–747. doi:10.1038/jp.2015.45

    Article  CAS  PubMed  Google Scholar 

  6. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1994) Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest Ophthalmol Vis Sci 35:3825–3834

    CAS  PubMed  Google Scholar 

  7. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1995) Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res 60:373–383

    Article  CAS  PubMed  Google Scholar 

  8. Tamaki Y, Araie M, Tomita K, Nagahara M, Tomidokoro A, Fujii H (1997) Real-time measurement of human optic nerve head and choroid circulation, using the laser speckle phenomenon. Jpn J Ophthalmol 41:49–54

    Article  CAS  PubMed  Google Scholar 

  9. Sugiyama T, Araie M, Riva CE, Schmetterer L, Orgul S (2010) Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol 88:723–729. doi:10.1111/j.1755-3768.2009.01586.x

    Article  PubMed  Google Scholar 

  10. Isono H, Kishi S, Kimura Y, Hagiwara N, Konishi N, Fujii H (2003) Observation of choroidal circulation using index of erythrocytic velocity. Arch Ophthalmol 121:225–231

    Article  PubMed  Google Scholar 

  11. Fujii H (1994) Visualisation of retinal blood flow by laser speckle flowgraphy. Med Biol Eng Comput 32:302–304

    Article  CAS  PubMed  Google Scholar 

  12. Aizawa N, Nitta F, Kunikata H, Sugiyama T, Ikeda T, Araie M, Nakazawa T (2014) Laser speckle and hydrogen gas clearance measurements of optic nerve circulation in albino and pigmented rabbits with or without optic disc atrophy. Invest Ophthalmol Vis Sci 55:7991–7996. doi:10.1167/iovs.14-15373

    Article  CAS  PubMed  Google Scholar 

  13. Aizawa N, Yokoyama Y, Chiba N, Omodaka K, Yasuda M, Otomo T, Nakamura M, Fuse N, Nakazawa T (2011) Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma. Clin Ophthalmol 5:1171–1176. doi:10.2147/OPTH.S22093

    PubMed  PubMed Central  Google Scholar 

  14. Shiga Y, Omodaka K, Kunikata H, Ryu M, Yokoyama Y, Tsuda S, Asano T, Maekawa S, Maruyama K, Nakazawa T (2013) Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci 54:7699–7706. doi:10.1167/iovs.13-12930

    Article  PubMed  Google Scholar 

  15. Maeda K, Ishikawa F, Ohguro H (2009) Ocular blood flow levels and visual prognosis in a patient with nonischemic type central retinal vein occlusion. Clin Ophthalmol 3:489–491

    Article  PubMed  PubMed Central  Google Scholar 

  16. Matsumoto T, Itokawa T, Shiba T, Katayama Y, Arimura T, Mizukaki N, Yoda H, Hori Y (2015) Reproducibility of neonate ocular circulation measurements using laser speckle flowgraphy. Biomed Res Int 2015:693056. doi:10.1155/2015/693056

    PubMed  PubMed Central  Google Scholar 

  17. Wang L, Cull GA, Piper C, Burgoyne CF, Fortune B (2012) Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Invest Ophthalmol Vis Sci 53:8303–8309. doi:10.1167/iovs.12-10911

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cull G, Burgoyne CF, Fortune B, Wang L (2013) Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma. Invest Ophthalmol Vis Sci 54:4271–4277. doi:10.1167/iovs.13-12013

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wada Y, Higashide T, Nagata A, Sugiyama K (2016) Longitudinal changes in optic nerve head blood flow in normal rats evaluated by laser speckle flowgraphy. Invest Ophthalmol Vis Sci 57:5568–5575. doi:10.1167/iovs.16-19945

    Article  PubMed  Google Scholar 

  20. Cairns JE (1959) Normal development of the hyaloid and retinal vessels in the rat. Br J Ophthalmol 43:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu K, Akula JD, Falk C, Hansen RM, Fulton AB (2006) The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 47:2639–2647. doi:10.1167/iovs.06-0016

    Article  PubMed  Google Scholar 

  22. Hartnett ME, Martiniuk D, Byfield G, Geisen P, Zeng G, Bautch VL (2008) Neutralizing VEGF decreases tortuosity and alters endothelial cell division orientation in arterioles and veins in a rat model of ROP: relevance to plus disease. Invest Ophthalmol Vis Sci 49:3107–3114. doi:10.1167/iovs.08-1780

    Article  PubMed  PubMed Central  Google Scholar 

  23. Davitt BV, Wallace DK (2009) Plus disease. Surv Ophthalmol 54:663–670. doi:10.1016/j.survophthal.2009.02.021

    Article  PubMed  Google Scholar 

  24. Hartnett ME (2010) The effects of oxygen stresses on the development of features of severe retinopathy of prematurity: knowledge from the 50/10 OIR model. Doc Ophthalmol 120:25–39. doi:10.1007/s10633-009-9181-x

    Article  PubMed  Google Scholar 

  25. Matsumoto T, Itokawa T, Shiba T, Katayama Y, Arimura T, Hine K, Mizukaki N, Yoda H, Hori Y (2016) Ocular blood flow values measured by laser speckle flowgraphy correlate with the postmenstrual age of normal neonates. Graefes Arch Clin Exp Ophthalmol 254:1631–1636. doi:10.1007/s00417-016-3362-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yamada Y, Suzuma K, Matsumoto M, Tsuiki E, Fujikawa A, Harada T, Kitaoka T (2015) Retinal blood flow correlates to aqueous vascular endothelial growth factor in central retinal vein occlusion. Retina. doi:10.1097/IAE.0000000000000595

  27. Ishida S, Usui T, Yamashiro K, Kaji Y, Ahmed E, Carrasquillo KG, Amano S, Hida T, Oguchi Y, Adamis AP (2003) VEGF164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci 44:2155–2162

    Article  PubMed  Google Scholar 

  28. Ishida S, Usui T, Yamashiro K, Kaji Y, Amano S, Ogura Y, Hida T, Oguchi Y, Ambati J, Miller JW, Gragoudas ES, Ng YS, D'Amore PA, Shima DT, Adamis AP (2003) VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198:483–489. doi:10.1084/jem.20022027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rakoczy PE, Brankov M, Fonceca A, Zaknich T, Rae BC, Lai CM (2003) Enhanced recombinant adeno-associated virus-mediated vascular endothelial growth factor expression in the adult mouse retina: a potential model for diabetic retinopathy. Diabetes 52:857–863

    Article  CAS  PubMed  Google Scholar 

  30. Edelman JL, Lutz D, Castro MR (2005) Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res 80:249–258. doi:10.1016/j.exer.2004.09.013

    Article  CAS  PubMed  Google Scholar 

  31. Kaur C, Sivakumar V, Foulds WS (2006) Early response of neurons and glial cells to hypoxia in the retina. Invest Ophthalmol Vis Sci 47:1126–1141. doi:10.1167/iovs.05-0518

    Article  PubMed  Google Scholar 

  32. Tatlipinar S, Dinc UA, Yenerel NM, Gorgun E (2012) Short-term effects of a single intravitreal bevacizumab injection on retinal vessel calibre. Clin Exp Optom 95:94–98. doi:10.1111/j.1444-0938.2011.00662.x

    Article  PubMed  Google Scholar 

  33. Young TL, Anthony DC, Pierce E, Foley E, Smith LE (1997) Histopathology and vascular endothelial growth factor in untreated and diode laser-treated retinopathy of prematurity. J AAPOS 1:105–110

    Article  CAS  PubMed  Google Scholar 

  34. Penn JS, Henry MM, Tolman BL (1994) Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res 36:724–731. doi:10.1203/00006450-199412000-00007

    Article  CAS  PubMed  Google Scholar 

  35. Reynaud X, Dorey CK (1994) Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat. Invest Ophthalmol Vis Sci 35:3169–3177

    CAS  PubMed  Google Scholar 

  36. Zhang S, Leske DA, Holmes JM (2000) Neovascularization grading methods in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 41:887–891

    CAS  PubMed  Google Scholar 

  37. Ubuka M, Sugiyama T, Onoda Y, Shiba T, Hori Y, Maeno T (2014) Changes in the blood flow of the optic nerve head induced by different concentrations of epinephrine in intravitreal infusion during vitreous surgery. Invest Ophthalmol Vis Sci 55:1625–1629. doi:10.1167/iovs.13-13801

    Article  CAS  PubMed  Google Scholar 

  38. Shiga Y, Shimura M, Asano T, Tsuda S, Yokoyama Y, Aizawa N, Omodaka K, Ryu M, Yokokura S, Takeshita T, Nakazawa T (2013) The influence of posture change on ocular blood flow in normal subjects, measured by laser speckle flowgraphy. Curr Eye Res 38:691–698. doi:10.3109/02713683.2012.758292

    Article  PubMed  Google Scholar 

  39. Sugiyama T (2014) Basic technology and clinical applications of the updated model of laser speckle flowgraphy to ocular diseases. Photo-Dermatology 1:220–234

    Google Scholar 

  40. Hida T (1982) Hyaloid vascular system of the rat: a study on its topography examined by plastic cast (author's transl). Nippon Ganka Gakkai Zasshi 86:315–327

    CAS  PubMed  Google Scholar 

  41. Larrazabal LI, Penn JS (1990) Fluorescein angiography of the newborn rat. Implications in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 31:810–818

    CAS  PubMed  Google Scholar 

  42. Berkowitz BA, Lukaszew RA, Mullins CM, Penn JS (1998) Impaired hyaloidal circulation function and uncoordinated ocular growth patterns in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 39:391–396

    CAS  PubMed  Google Scholar 

  43. Favazza TL, Tanimoto N, Munro RJ, Beck SC, Garcia Garrido M, Seide C, Sothilingam V, Hansen RM, Fulton AB, Seeliger MW, Akula JD (2013) Alterations of the tunica vasculosa lentis in the rat model of retinopathy of prematurity. Doc Ophthalmol 127:3–11. doi:10.1007/s10633-013-9392-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stahl A, Chen J, Sapieha P, Seaward MR, Krah NM, Dennison RJ, Favazza T, Bucher F, Lofqvist C, Ong H, Hellstrom A, Chemtob S, Akula JD, Smith LE (2010) Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am J Pathol 177:2715–2723. doi:10.2353/ajpath.2010.100526

    Article  PubMed  PubMed Central  Google Scholar 

  45. Geisen P, Peterson LJ, Martiniuk D, Uppal A, Saito Y, Hartnett ME (2008) Neutralizing antibody to VEGF reduces intravitreous neovascularization and may not interfere with ongoing intraretinal vascularization in a rat model of retinopathy of prematurity. Mol Vis 14:345–357

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rabinowitz R, Priel A, Rosner M, Pri-Chen S, Spierer A (2012) Avastin treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity. Curr Eye Res 37:624–629. doi:10.3109/02713683.2012.669003

    Article  CAS  PubMed  Google Scholar 

  47. Soetikno BT, Yi J, Shah R, Liu W, Purta P, Zhang HF, Fawzi AA (2015) Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model. Sci Rep 5:16752. doi:10.1038/srep16752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, Ferrara N, Copenhagen DR, Lang RA (2013) A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494:243–246. doi:10.1038/nature11823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Renz BE, Vygantas CM (1977) Hyaloid vascular remnants in human neonates. Ann Ophthalmol 9:179–184

    CAS  PubMed  Google Scholar 

  50. Eller AW, Jabbour NM, Hirose T, Schepens CL (1987) Retinopathy of prematurity. The association of a persistent hyaloid artery. Ophthalmology 94:444–448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. E. Ozawa for her technical assistance.

This work was supported by a Toho University Tobari scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Matsumoto.

Ethics declarations

Funding

Toho University provided financial support in the form of a Tobari scholarship. The sponsor had no role in the design or conduct of this research.

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Animal experiments

All procedures performed in studies involving animals were in accordance with the ethical standards of Showa University (Tokyo) (nos. #05101, #06004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Saito, Y., Itokawa, T. et al. Retinal VEGF levels correlate with ocular circulation measured by a laser speckle-micro system in an oxygen-induced retinopathy rat model. Graefes Arch Clin Exp Ophthalmol 255, 1981–1990 (2017). https://doi.org/10.1007/s00417-017-3756-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3756-0

Keywords

Navigation