Skip to main content

Assessment of Retinal Arteriolar Morphology by SLDF

  • Chapter
  • First Online:
Microcirculation in Cardiovascular Diseases

Abstract

The analysis of retinal vessels offers the exceptional opportunity to assess human microcirculation in vivo. However, for the assessment of vascular remodeling in vivo, two interrelated and indistinguishable features have to be taken into account, which are morphological changes (i.e., rearrangement and hypertrophy of vascular smooth muscle cells), but also changes in vascular tone (i.e., endothelial function). In the last years, several methods have been introduced for the assessment of retinal changes. One promising approach, introduced about two decades ago, is scanning laser Doppler flowmetry (SLDF) allowing both the dynamic assessment of structural and functional parameters repeatedly, directly, noninvasively, and safely in vivo with high reliability.

Since, this book focuses on retinal arteriolar morphology, we have mainly restricted the chapter on scientific established (i.e., wall-to-lumen ratio) retinal structural parameter, but in addition new features of retinal structural parameters (e.g., capillary rarefaction), which need the measurement of retinal capillary flow for determination, are discussed as well. Moreover, achieved data were set briefly in context to both underlying pathophysiological mechanism and findings. Further, we provide an overview of first treatment effects on SLDF-based retinal structural parameters in different clinical conditions (e.g., hypertension, stroke).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agabiti-Rosei E, Rizzoni D. Microvascular structure as a prognostically relevant endpoint. J Hypertens. 2017;35:914–21.

    Article  CAS  PubMed  Google Scholar 

  2. Rizzoni D, Porteri E, Duse S, De Ciuceis C, Rosei CA, La Boria E, Semeraro F, Costagliola C, Sebastiani A, Danzi P, Tiberio GA, Giulini SM, Docchio F, Sansoni G, Sarkar A, Rosei EA. Relationship between media-to-lumen ratio of subcutaneous small arteries and wall-to-lumen ratio of retinal arterioles evaluated noninvasively by scanning laser doppler flowmetry. J Hypertens. 2012;30:1169–75.

    Article  CAS  PubMed  Google Scholar 

  3. Keith NM, Wagener HP, Barker NW. Some different types of essential hypertension: their course and prognosis. Am J Med Sci. 1939;197:332–43.

    Article  Google Scholar 

  4. Harazny JM, Raff U, Welzenbach J, Ott C, Ritt M, Lehmann M, Michelson G, Schmieder RE. New software analyses increase the reliability of measurements of retinal arterioles morphology by scanning laser Doppler flowmetry in humans. J Hypertens. 2011;29:777–82.

    Article  CAS  PubMed  Google Scholar 

  5. Apple FS, Wu AH, Jaffe AS. European society of cardiology and american college of cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J. 2002;144:981–6.

    Article  PubMed  Google Scholar 

  6. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined--a consensus document of the joint european society of cardiology/american college of cardiology committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69.

    Article  CAS  PubMed  Google Scholar 

  7. Michelson G, Warntges S, Baleanu D, Welzenbach J, Ohno-Jinno A, Pogorelov P, Harazny J. Morphometric age-related evaluation of small retinal vessels by scanning laser doppler flowmetry: determination of a vessel wall index. Retina. 2007;27:490–8.

    Article  PubMed  Google Scholar 

  8. Ritt M, Schmieder RE. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension. 2009;54:384–7.

    Article  CAS  PubMed  Google Scholar 

  9. Harazny JM, Schmieder RE, Welzenbach J, Michelson G. Local application of tropicamide 0.5% reduces retinal capillary blood flow. Blood Press. 2013;22:371–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kreis AJ, Nguyen T, Rogers S, Wang JJ, Harazny J, Michelson G, Farouque HM, Wong TY. Reliability of different image analysis methods for scanning laser doppler flowmetry. Curr Eye Res. 2008;33:493–9.

    Article  PubMed  Google Scholar 

  11. Harazny JM, Schmieder RE. Interpretation of noninvasive retinal microvascular studies: the individual source of the automatic full field imaging analysis program has to be taken into account. J Hypertens. 2018;36:2277.

    Article  CAS  PubMed  Google Scholar 

  12. Schiffrin EL, Hayoz D. How to assess vascular remodelling in small and medium-sized muscular arteries in humans. J Hypertens. 1997;15:571–84.

    Article  CAS  PubMed  Google Scholar 

  13. Ritt M, Harazny JM, Ott C, Schlaich MP, Schneider MP, Michelson G, Schmieder RE. Analysis of retinal arteriolar structure in never-treated patients with essential hypertension. J Hypertens. 2008;26:1427–34.

    Article  CAS  PubMed  Google Scholar 

  14. Harazny JM, Ritt M, Baleanu D, Ott C, Heckmann J, Schlaich MP, Michelson G, Schmieder RE. Increased wall:lumen ratio of retinal arterioles in male patients with a history of a cerebrovascular event. Hypertension. 2007;50:623–9.

    Article  CAS  PubMed  Google Scholar 

  15. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, Umans JG, Howard BV. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the strong heart study. Hypertension. 2007;50:197–203.

    Article  CAS  PubMed  Google Scholar 

  16. Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, Yin FC, Chou P, Chen CH. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens. 2009;27:461–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang CM, Wang KL, Cheng HM, Chuang SY, Sung SH, Yu WC, Ting CT, Lakatta EG, Yin FC, Chou P, Chen CH. Central versus ambulatory blood pressure in the prediction of all-cause and cardiovascular mortalities. J Hypertens. 2011;29:454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ott C, Raff U, Harazny JM, Michelson G, Schmieder RE. Central pulse pressure is an independent determinant of vascular remodeling in the retinal circulation. Hypertension. 2013;61:1340–5.

    Article  CAS  PubMed  Google Scholar 

  19. Salvetti M, Agabiti Rosei C, Paini A, Aggiusti C, Cancarini A, Duse S, Semeraro F, Rizzoni D, Agabiti Rosei E, Muiesan ML. Relationship of wall-to-lumen ratio of retinal arterioles with clinic and 24-hour blood pressure. Hypertension. 2014;63:1110–5.

    Article  CAS  PubMed  Google Scholar 

  20. Prejbisz A, Harazny J, Szymanek K, et al. Retinal arteriolar structure in patients with pheochromocytoma. J Hypertens. 2015;33:e102.

    Article  Google Scholar 

  21. Gosk-Przybylek M, Harazny J, Binczyk E, et al. Retinal arteriolar structure in patients with primary aldosteronism. J Hypertens. 2015;33:e103.

    Article  Google Scholar 

  22. Warchol-Celinska E, Gosk-Przybylek M, Harazny J, et al. Evaluation of retinal microperfusion and arteriolar structure in patients with fibromuscular dysplasia—the polish registry for Fibromuscular dysplasia (ARCADIA-POL STUDY). J Hypertens. 2017;35:e267.

    Article  Google Scholar 

  23. De Ciuceis C, Savoia C, Arrabito E, Porteri E, Mazza M, Rossini C, Duse S, Semeraro F, Agabiti Rosei C, Alonzo A, Sada L, La Boria E, Sarkar A, Petroboni B, Mercantini P, Volpe M, Rizzoni D, Agabiti RE. Effects of a long-term treatment with aliskiren or ramipril on structural alterations of subcutaneous small-resistance arteries of diabetic hypertensive patients. Hypertension. 2014;64:717–24.

    Article  PubMed  CAS  Google Scholar 

  24. De Ciuceis C, Salvetti M, Rossini C, Muiesan ML, Paini A, Duse S, La Boria E, Semeraro F, Cancarini A, Rosei CA, Sarkar A, Ruggeri G, Caimi L, Ricotta D, Rizzoni D, Rosei EA. Effect of antihypertensive treatment on microvascular structure, central blood pressure and oxidative stress in patients with mild essential hypertension. J Hypertens. 2014;32:565–74.

    Article  PubMed  CAS  Google Scholar 

  25. De Ciuceis C, Salvetti M, Paini A, Rossini C, Muiesan ML, Duse S, Caletti S, Coschignano MA, Semeraro F, Trapletti V, Bertacchini F, Brami V, Petelca A, Agabiti Rosei E, Rizzoni D, Agabiti RC. Comparison of lercanidipine plus hydrochlorothiazide vs. Lercanidipine plus enalapril on micro and macrocirculation in patients with mild essential hypertension. Intern Emerg Med. 2017;12:963–74.

    Article  PubMed  Google Scholar 

  26. Agabiti-Rosei E, Heagerty AM, Rizzoni D. Effects of antihypertensive treatment on small artery remodelling. J Hypertens. 2009;27:1107–14.

    Article  CAS  PubMed  Google Scholar 

  27. Jumar A, Ott C, Kistner I, Friedrich S, Schmidt S, Harazny JM, Schmieder RE. Effect of aliskiren on vascular remodelling in small retinal circulation. J Hypertens. 2015;33:2491–9.

    Article  CAS  PubMed  Google Scholar 

  28. Baleanu D, Ritt M, Harazny J, Heckmann J, Schmieder RE, Michelson G. Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage. Invest Ophthalmol Vis Sci. 2009;50:4351–9.

    Article  PubMed  Google Scholar 

  29. van Sloten TT, Sedaghat S, Laurent S, London GM, Pannier B, Ikram MA, Kavousi M, Mattace-Raso F, Franco OH, Boutouyrie P, Stehouwer CDA. Carotid stiffness is associated with incident stroke: a systematic review and individual participant data meta-analysis. J Am Coll Cardiol. 2015;66:2116–25.

    Article  PubMed  Google Scholar 

  30. Paini A, Muiesan ML, Agabiti-Rosei C, Aggiusti C, De Ciuceis C, Bertacchini F, Duse S, Semeraro F, Rizzoni D, Agabiti-Rosei E, Salvetti M. Carotid stiffness is significantly correlated with wall-to-lumen ratio of retinal arterioles. J Hypertens. 2018;36:580–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Gans RO, Janssen WM, Grobbee DE, de Jong PE, Prevention of R, Vascular End Stage Disease Study G. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    Article  CAS  PubMed  Google Scholar 

  32. Ritt M, Harazny JM, Ott C, Schneider MP, Schlaich MP, Michelson G, Schmieder RE. Wall-to-lumen ratio of retinal arterioles is related with urinary albumin excretion and altered vascular reactivity to infusion of the nitric oxide synthase inhibitor n-monomethyl-l-arginine. J Hypertens. 2009;27:2201–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bosch A, Scheppach JB, Harazny JM, Raff U, Eckardt KU, Schmieder RE, Schneider MP. Retinal capillary and arteriolar changes in patients with chronic kidney disease. Microvasc Res. 2018;118:121–7.

    Article  PubMed  Google Scholar 

  34. Jumar A, Ott C, Kistner I, Friedrich S, Michelson G, Harazny JM, Schmieder RE. Early signs of end-organ damage in retinal arterioles in patients with type 2 diabetes compared to hypertensive patients. Microcirculation. 2016;23:447–55.

    Article  CAS  PubMed  Google Scholar 

  35. Stefanski A, Harazny J, Wolf J et al. Impact of type 1 diabetes and its duration on wall-to-lumen ratio of retinal arterioles. submitted.

    Google Scholar 

  36. Ott C, Raff U, Schmidt S, Kistner I, Friedrich S, Bramlage P, Harazny JM, Schmieder RE. Effects of saxagliptin on early microvascular changes in patients with type 2 diabetes. Cardiovasc Diabetol. 2014;13:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Berndt-Zipfel C, Michelson G, Dworak M, Mitry M, Loffler A, Pfutzner A, Forst T. Vildagliptin in addition to metformin improves retinal blood flow and erythrocyte deformability in patients with type 2 diabetes mellitus—results from an exploratory study. Cardiovasc Diabetol. 2013;12:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    Article  CAS  PubMed  Google Scholar 

  39. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti-Rosei E. Prognostic significance of small-artery structure in hypertension. Circulation. 2003;108:2230–5.

    Article  PubMed  Google Scholar 

  40. Harazny JM, Ott C, Raff U, Welzenbach J, Kwella N, Michelson G, Schmieder RE. First experience in analysing pulsatile retinal capillary flow and arteriolar structural parameters measured noninvasively in hypertensive patients. J Hypertens. 2014;32:2246–52. discussion 2252

    Article  CAS  PubMed  Google Scholar 

  41. Clark MG, Barrett EJ, Wallis MG, Vincent MA, Rattigan S. The microvasculature in insulin resistance and type 2 diabetes. Semin Vasc Med. 2002;2:21–31.

    Article  PubMed  Google Scholar 

  42. Serne EH, Gans RO, ter Maaten JC, Tangelder GJ, Donker AJ, Stehouwer CD. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001;38:238–42.

    Article  CAS  PubMed  Google Scholar 

  43. Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res. 2014;51:247–58.

    Article  PubMed  Google Scholar 

  44. Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI, Tibirica E. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens. 2006;19:477–83.

    Article  PubMed  Google Scholar 

  45. Jumar A, Harazny JM, Ott C, Friedrich S, Kistner I, Striepe K, Schmieder RE. Retinal capillary rarefaction in patients with type 2 diabetes mellitus. PLoS One. 2016;11:e0162608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bosch AJ, Harazny JM, Kistner I, Friedrich S, Wojtkiewicz J, Schmieder RE. Retinal capillary rarefaction in patients with untreated mild-moderate hypertension. BMC Cardiovasc Disord. 2017;17:300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Battegay EJ, de Miguel LS, Petrimpol M, Humar R. Effects of anti-hypertensive drugs on vessel rarefaction. Curr Opin Pharmacol. 2007;7:151–7.

    Article  CAS  PubMed  Google Scholar 

  48. Jumar A, Harazny JM, Ott C, Kistner I, Friedrich S, Schmieder RE. Improvement in retinal capillary rarefaction after valsartan treatment in hypertensive patients. J Clin Hypertens. 2016;18:1112–8.

    Article  CAS  Google Scholar 

  49. Folkow B. Regulation of the peripheral circulation. Br Heart J. 1971;33(Suppl):27–31.

    Article  PubMed Central  Google Scholar 

  50. Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17:1192–200.

    Article  CAS  PubMed  Google Scholar 

  51. Kannenkeril D, Harazny JM, Bosch A, Ott C, Michelson G, Schmieder RE, Friedrich S. Retinal vascular resistance in arterial hypertension. Blood Press. 2018;27:82–7.

    Article  PubMed  Google Scholar 

  52. Ott C, Schmieder RE. Retinal circulation in arterial disease. In: Berbari A, Mancia G, editors. Arterial disorders: Springer; 2015.

    Google Scholar 

  53. Michelson G, Welzenbach J, Pal I, Harazny J. Automatic full field analysis of perfusion images gained by scanning laser doppler flowmetry. Br J Ophthalmol. 1998;82:1294–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koch E, Rosenbaum D, Brolly A, Sahel JA, Chaumet-Riffaud P, Girerd X, Rossant F, Paques M. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014;32:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muraoka Y, Tsujikawa A, Kumagai K, Akiba M, Ogino K, Murakami T, Akagi-Kurashige Y, Miyamoto K, Yoshimura N. Age- and hypertension-dependent changes in retinal vessel diameter and wall thickness: an optical coherence tomography study. Am J Ophthalmol. 2013;156:706–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland E. Schmieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ott, C., Schmieder, R.E. (2020). Assessment of Retinal Arteriolar Morphology by SLDF. In: Agabiti-Rosei, E., Heagerty, A.M., Rizzoni, D. (eds) Microcirculation in Cardiovascular Diseases. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-47801-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47801-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47800-1

  • Online ISBN: 978-3-030-47801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics