Skip to main content
Log in

The pattern of early corneal endothelial cell recovery following cataract surgery: cellular migration or enlargement?

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate whether cellular migration or enlargement is the main mechanism of initial endothelial cell recovery following cataract surgery.

Methods

A prospective observational study, of 24 patients aged 50–80 years who were diagnosed with moderate cataract and received uncomplicated cataract surgery with a 2.75 mm temporal clear corneal incision, was performed in Seoul National University Bundang Hospital. Endothelial cell density (ECD) and area (ECA) were obtained in central and four paracentral (superior, inferior, nasal, and temporal) areas using non-contact specular microscopy. ECD, ECA, ECD% (ECD% = ECD in each area/the sum total of ECD in five areas), and the coefficient of variation of ECA (CV) in each location were investigated pre- and 1 day, 1 week, and 4 weeks postoperatively.

Results

ECD significantly decreased 1 day, 1 week, and 4 weeks postoperatively (p = 0.010, 0.015, and 0.003 respectively), and ECA increased (p = 0.008, 0.013, and 0.002 respectively) in only the temporal area. Postoperative ECD% decreased, and CV increased in only the temporal area significantly, when compared to preoperative values. There were no significant postoperative changes of ECD, ECA, ECD%, and CV in other areas.

Conclusions

Postoperative changes of ECD, ECA, ECD%, and CV were limited to the temporal area adjacent to the primary corneal incision. Cellular enlargement, rather than migration, may have the major effect on early endothelial cell recovery after cataract surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vajpayee RB, Kumar A, Dada T, Titiyal JS, Sharma N, Dada VK (2000) Phaco-chop versus stop-and-chop nucleotomy for phacoemulsification. J Cataract Refract Surg 26:1638–1641

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Zeng M, Liu X, Luo L, Yuan Z, Xia Y, Zeng Y (2007) Torsional mode versus conventional ultrasound mode phacoemulsification: randomized comparative clinical study. J Cataract Refract Surg 33:287–292

    Article  CAS  PubMed  Google Scholar 

  3. Zeng M, Liu X, Liu Y, Xia Y, Luo L, Yuan Z, Zeng Y (2008) Torsional ultrasound modality for hard nucleus phacoemulsification cataract extraction. Br J Ophthalmol 92:1092–1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Storr-Paulsen A, Norregaard JC, Ahmed S, Storr-Paulsen T, Pedersen TH (2008) Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg 34:996–1000

    Article  PubMed  Google Scholar 

  5. Krachmer JH, Mannis MJ, Holland EJ (2010) Cornea. In: Nishida T, Saika S (eds) Cornea and sclera — anatomy and physiology, 3rd edn. Elsevier Mosby, Philadelphia, pp 4–24

    Google Scholar 

  6. Ichijima H, Petroll WM, Jester JV, Barry PA, Andrews PM, Dai M, Cavanagh HD (1993) In vivo confocal microscopic studies of endothelial wound healing in rabbit cornea. Cornea 12:369–378

    Article  CAS  PubMed  Google Scholar 

  7. Tuft SJ, Williams KA, Coster DJ (1986) Endothelial repair in the rat cornea. Invest Ophthalmol Vis Sci 27:1199–1204

    CAS  PubMed  Google Scholar 

  8. Matsuda M, Sawa M, Edelhauser HF, Bartels SP, Neufeld AH, Kenyon KR (1985) Cellular migration and morphology in corneal endothelial wound repair. Invest Ophthalmol Vis Sci 26:443–449

    CAS  PubMed  Google Scholar 

  9. Matsubara M, Tanishima T (1982) Wound-healing of the corneal endothelium in the monkey: a morphometric study. Jpn J Ophthalmol 26:264–273

    CAS  PubMed  Google Scholar 

  10. Yamaguchi M, Ebihara N, Shima N, Kimoto M, Funaki T, Yokoo S, Murakami A, Yamagami S (2011) Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci 52:679–684

    Article  CAS  PubMed  Google Scholar 

  11. Nakahara M, Okumura N, Kay EP, Hagiya M, Imagawa K, Hosoda Y, Kinoshita S, Koizumi N (2013) Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One 8, e69009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Patel SV, Bachman LA, Hann CR, Bahler CK, Fautsch MP (2009) Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci 50:2123–2131

    Article  PubMed Central  PubMed  Google Scholar 

  13. Joko T, Shiraishi A, Akune Y, Tokumaru S, Kobayashi T, Miyata K, Ohashi Y (2013) Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-beta(2). Exp Eye Res 108:23–32

    Article  CAS  PubMed  Google Scholar 

  14. Hughes EH, Pretorius M, Eleftheriadis H, Liu CS (2007) Long-term recovery of the human corneal endothelium after toxic injury by benzalkonium chloride. Br J Ophthalmol 91:1460–1463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schilling-Schon A, Pleyer U, Hartmann C, Rieck PW (2000) The role of endogenous growth factors to support corneal endothelial migration after wounding in vitro. Exp Eye Res 71:583–589

    Article  CAS  PubMed  Google Scholar 

  16. Regis-Pacheco LF, Binder PS (2014) What happens to the corneal transplant endothelium after penetrating keratoplasty? Cornea 33:587–596

    Article  PubMed  Google Scholar 

  17. Jacobi C, Zhivov A, Korbmacher J, Falke K, Guthoff R, Schlötzer-Schrehardt U, Cursiefen C, Kruse FE (2011) Evidence of endothelial cell migration after Descemet membrane endothelial keratoplasty. Am J Ophthalmol 152:537–542

    Article  PubMed  Google Scholar 

  18. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY (1993) The lens opacities classification system III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 111:831–836

    Article  PubMed  Google Scholar 

  19. Joyce NC (2005) Cell cycle status in human corneal endothelium. Exp Eye Res 81:629–638

    Article  CAS  PubMed  Google Scholar 

  20. Bourne WM, McLaren JW (2004) Clinical responses of the corneal endothelium. Exp Eye Res 78:561–572

    Article  CAS  PubMed  Google Scholar 

  21. Dick HB, Kohnen T, Jacobi FK, Jacobi KW (1996) Long-term endothelial cell loss following phacoemulsification through a temporal clear corneal incision. J Cataract Refract Surg 22:63–71

    Article  CAS  PubMed  Google Scholar 

  22. Diaz-Valle D, del Castillo B, Sanchez JM, Castillo A, Sayagues O, Moriche M (1998) Endothelial damage with cataract surgery techniques. J Cataract Refract Surg 24:951–955

    Article  CAS  PubMed  Google Scholar 

  23. Walkow T, Anders N, Klebe S (2000) Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 26:727–732

    Article  CAS  PubMed  Google Scholar 

  24. Beltrame G, Salvetat ML, Driussi G, Chizzolini M (2002) Effect of incision size and site on corneal endothelial changes in cataract surgery. J Cataract Refract Surg 28:118–125

    Article  PubMed  Google Scholar 

  25. Inoue K, Tokuda Y, Inoue Y, Amano S, Oshika T, Inoue J (2002) Corneal endothelial cell morphology in patients undergoing cataract surgery. Cornea 21:360–363

    Article  PubMed  Google Scholar 

  26. Ravalico G, Botteri E, Baccara F (2003) Long-term endothelial changes after implantation of anterior chamber intraocular lenses in cataract surgery. J Cataract Refract Surg 29:1918–1923

    Article  PubMed  Google Scholar 

  27. Bourne RR, Minassian DC, Dart JK, Rosen P, Kaushal S, Wingate N (2004) Effect of cataract surgery on the corneal endothelium: modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology 111:679–685

    Article  PubMed  Google Scholar 

  28. Lee JS, Lee JE, Choi HY, Oum BS, Cho BM (2005) Corneal endothelial cell change after phacoemulsification relative to the severity of diabetic retinopathy. J Cataract Refract Surg 31:742–749

    Article  PubMed  Google Scholar 

  29. McCarey BE, Edelhauser HF, Lynn MJ (2008) Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices and new intraocular drugs and solutions. Cornea 27:1–16

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gonen T, Sever O, Horozoglu F, Yasar M, Keskinbora KH (2012) Endothelial cell loss: biaxial small-incision torsional phacoemulsification versus biaxial small-incision longitudinal phacoemulsification. J Cataract Refract Surg 38:1918–1924

    Article  PubMed  Google Scholar 

  31. Vasavada AR, Vasavada V, Vasavada VA, Praveen MR, Johar SR, Gajjar D, Arora AI (2012) Comparison of the effect of torsional and microburst longitudinal ultrasound on clear corneal incisions during phacoemulsification. J Cataract Refract Surg 38:833–839

    Article  PubMed  Google Scholar 

  32. Assaf A, Roshdy MM (2013) Comparative analysis of corneal morphological changes after transversal and torsional phacoemulsification through 2.2 mm corneal incision. Clin Ophthalmol 7:55–61

    PubMed Central  PubMed  Google Scholar 

  33. Schultz RO, Glasser DB, Matsuda M, Yee RW, Edelhauser HF (1986) Response of the corneal endothelium to cataract surgery. Arch Ophthalmol 104:1164–1169

    Article  CAS  PubMed  Google Scholar 

  34. Werblin TP (1993) Long-term endothelial cell loss following phacoemulsification: model for evaluating endothelial damage after intraocular surgery. Refract Corneal Surg 9:29–35

    CAS  PubMed  Google Scholar 

  35. Dick B, Kohnen T, Jacobi KW (1995) Endothelial cell loss after phacoemulsification and 3.5 vs. 5 mm corneal tunnel incision. Ophthalmologe 92:476–483

    CAS  PubMed  Google Scholar 

  36. Mathys KC, Cohen KL, Armstrong BD (2007) Determining factors for corneal endothelial cell loss by using bimanual microincision phacoemulsification and power modulation. Cornea 26:1049–1055

    Article  PubMed  Google Scholar 

  37. Ling T, Vannas A, Holden B (1988) Long-term changes in corneal endothelial morphology following wounding in the cat. Invest Ophthalmol Vis Sci 29:1407–1412

    CAS  PubMed  Google Scholar 

  38. Huang P, Nelson L, Bourne W (1989) The morphology and function of healing cat corneal endothelium. Invest Ophthalmol Vis Sci 30:1794–1801

    CAS  PubMed  Google Scholar 

  39. Treffers WF (1982) Human corneal endothelial wound repair. In vitro and in vivo. Ophthalmology 89:605–613

    Article  CAS  PubMed  Google Scholar 

  40. Rieck PW, Cholidis S, Hartmann C (2001) Intracellular signaling pathway of FGF-2-modulated corneal endothelial cell migration during wound healing in vitro. Exp Eye Res 73:639–650

    Article  CAS  PubMed  Google Scholar 

  41. Lee JG, Kay EP (2006) FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci 47:1376–1386

    Article  PubMed  Google Scholar 

  42. He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, Peoc’h M, Piselli S, Garraud O, Thuret G (2012) Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells 30:2523–2534

    Article  CAS  PubMed  Google Scholar 

  43. Price N, Jacobs P, Cheng H (1982) Rate of endothelial cell loss in the early postoperative period after cataract surgery. Br J Ophthalmol 66:709–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Young Hyon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Wee, W.R. & Hyon, J.Y. The pattern of early corneal endothelial cell recovery following cataract surgery: cellular migration or enlargement?. Graefes Arch Clin Exp Ophthalmol 253, 2211–2216 (2015). https://doi.org/10.1007/s00417-015-3100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3100-5

Keywords

Navigation