Skip to main content

Advertisement

Log in

Pharmacokinetics of intravenously administered tigecycline in eye compartments: an experimental study

  • Miscellaneous
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the ocular distribution of intravenously administered tigecycline in a rabbit uveitis model.

Methods

Tigecycline, which has a broad spectrum of activity against many gram-positive, gram-negative, and anaerobic organisms, was given intravenously to rabbits at 7 mg/kg of body weight starting 24 h after induction of uveitis by intravitreal endotoxin injection. Tigecycline concentrations were determined by high performance liquid chromatography-mass spectrometry (LC-MS/MS) assay in the aqueous humor, vitreous humor, and plasma 1, 3, 6, and 24 h after administration of a single dose.

Results

The maximum concentrations were found within 1 h after the end of the intravenously given tigecycline, and were 1,308.60 ± 301.76 ng/mL in plasma, 181.40 ± 51.32 ng/mL in vitreous humor and 145.00 ± 55.29 ng/mL in aqueous humor of the inflamed eye. After 24 h, no drug was detectable in the aqueous and vitreous of the normal eyes, whereas small amounts of drug were detectable in inflamed eyes and in plasma.

Conclusions

Tigecycline did not reach therapeutically significant levels in the aqueous and the vitreous humor of rabbit eyes. The findings suggest a limited role for intravenously administered tigecycline in the treatment of bacterial endophthalmitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Callegan MC, Engelbert M, Parke DW 2nd, Jett BD, Gilmore MS (2002) Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium-host interactions. Clin Microbiol Rev 15:111–124

    Article  PubMed Central  PubMed  Google Scholar 

  2. Scott IU, Flynn HW Jr, Feuer W, Pflugfelder SC, Alfonso EC, Forster RK, Miller D (1996) Endophthalmitis associated with microbial keratitis. Ophthalmology 103:1864–1870

    Article  CAS  PubMed  Google Scholar 

  3. Greer ND (2006) Tigecycline (tygacil): the first in the glycylcycline class of antibiotics. Proc (Baylor Univ Med Cent) 19:155–161

    Google Scholar 

  4. Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J, Gin A, Karlowsky JA, Hoban DJ (2004) The glycylcyclines: a comparative review with the tetracyclines. Drugs 64:63–88

    Article  CAS  PubMed  Google Scholar 

  5. Gary ES, William AC (2006) Tigecycline: a critical analysis. CID 43:518–524

    Article  Google Scholar 

  6. Daily MJ, Peyman GA, Fishman G (1973) Intravitreal injection of methicillin for treatment of endophthalmitis. Am J Ophthalmol 76:343–350

    Article  CAS  PubMed  Google Scholar 

  7. Jay WM, Shockley RK (1988) Toxicity and pharmacokinetics of cefepime (BMY-28142) following intravitreal injection in pigmented rabbit eyes. J Ocul Pharmacol 4:345–349

    Article  CAS  PubMed  Google Scholar 

  8. Wiechens B, Neumann D, Grammer JB, Pleyer U, Hedderich J, Duncker GI (1998) Retinal toxicity of liposome-incorporated and free ofloxacin after intravitreal injection in rabbit eyes. Int Ophthalmol 22:133–143

    Article  PubMed  Google Scholar 

  9. Endophthalmitis Vitrectomy Study Group (1995) Results of the endophthalmitis vitrectomy study. A randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Arch Ophthalmol 113:1479–1496

    Article  Google Scholar 

  10. Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57:2010–2032

    Article  CAS  PubMed  Google Scholar 

  11. Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S (2005) Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob Agents Chemother 49:220–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rodvold KA, Gotfried MH, Cwik M, Korth-Bradley JM, Dukart G, Ellis-Grosse EJ (2006) Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother 58:1221–1229

    Article  CAS  PubMed  Google Scholar 

  13. Lefort A, Lafaurie M, Massias L, Petegnief Y, Saleh-Mghir A, Muller-Serieys C, Le Guludec D, Fantin B (2003) Activity and diffusion of tigecycline (GAR-936) in experimental enterococcal endocarditis. Antimicrob Agents Chemother 47:216–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Abel R Jr, Boyle GL (1976) Dissecting ocular tissue for intraocular drug studies. Invest Ophthalmol 15:216–219

    PubMed  Google Scholar 

  15. Pai MP (2014) Serum and urine pharmacokinetics of tigecycline in obese class III and normal weight adults. J Antimicrob Chemother 69:190–199

    Article  CAS  PubMed  Google Scholar 

  16. Crandon JL, Kim A, Nicolau DP (2009) Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs. J Antimicrob Chemother 64:837–839

    Article  CAS  PubMed  Google Scholar 

  17. Dandache P, Nicolau DP, Sakoulas G (2009) Tigecyline for the treatment of multidrug-resistant Klebsiella pneumoniae meningitis. Infect Dis Clin Pract 17:66–68

    Article  Google Scholar 

  18. Wadi JA, Al Rub MA (2007) Multidrug resistant acinetobacter nosocomial meningitis treated successfully with parenteral tigecycline. Ann Saudi Med 27:456–458

    Article  PubMed  Google Scholar 

  19. Mannermaa E, Vellonen KS, Urtti A (2006) Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58:1136–1163

    Article  CAS  PubMed  Google Scholar 

  20. Ferencz JR, Assia EI, Diamantstein L, Rubinstein E (1999) Vancomycin concentration in the vitreous after intravenous and intravitreal administration for postoperative endophthalmitis. Arch Ophthalmol 117:1023–1027

    Article  CAS  PubMed  Google Scholar 

  21. Nau R, Sörgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Romero CF, Rai MK, Lowder CY, Adal KA (1999) Endogenous endophthalmitis: case report and brief review. Am Fam Physician 60:510–514

    CAS  PubMed  Google Scholar 

  23. Breit SM, Hariprasad SM, Mieler WF, Shah GK, Mills MD, Grand MG (2005) Management of endogenous fungal endophthalmitis with voriconazole and caspofungin. Am J Ophthalmol 139:135–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Konya Training and Research Hospital (KTRH-28), Konya, Turkey.

Author disclosure statement

The authors have no financial or proprietary interest in any material or method mentioned. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muammer Ozcimen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcimen, M., Sakarya, Y., Ozcimen, S. et al. Pharmacokinetics of intravenously administered tigecycline in eye compartments: an experimental study. Graefes Arch Clin Exp Ophthalmol 252, 1993–1997 (2014). https://doi.org/10.1007/s00417-014-2784-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2784-2

Keywords

Navigation