Skip to main content

Advertisement

Log in

Estrogen prevents high-glucose-induced damage of retinal ganglion cells via mitochondrial pathway

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Diabetic retinopathy (DR) is a leading cause of acquired blindness in adults. Previous research has shown that the apoptosis of retinal ganglion cells(RGCs) plays an important role in the initiation and development of diabetic retinopathy. The positive effect of estrogen on the nervous system is currently attracting increasing attention. In this study, we investigated whether17β-estradiolum (E2) has protective effects on RGCs in a high-glucose environment.

Methods

The cell survival rates were measured by Cell Counting Kit-8, the apoptosis was detected by flow cytometry, the intracellular reactive oxygen species (ROS) levels were examined by immunofluorescence method, and the intracellular mitochondrial membrane potential was examined by confocal microscopy. The expression levels of cytochrome C, Bcl-2, and Bax were analyzed by Western blot method. The effect of estrogen receptor blocker tamoxifen on the RGCs was also evaluated.

Results

It was found that E2 stabilizes the mitochondrial membrane potential, reduces intracellular ROS levels, up-regulates Bcl-2 expression, inhibits Bax expression, decreases the generation of cytochrome C, and finally reduces the apoptosis of RGC-5 cells in a high-glucose environment. These protective functions could be attributed to E2 receptors, which make E2 a prospective patent application candidate in the treatment of DR. Furthermore, when cells were pre-cultured with tamoxifen, we found that tamoxifen inhibited the shielding effects of E2.

Conclusion

E2 has a broad application prospect in the treatment of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bearse MA Jr, Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ (2004) Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 45:3259–3265

    Article  PubMed  Google Scholar 

  2. Ghirlanda G, Di Leo MA, Caputo S, Cercone S, Greco AV (1997) From functional to microvascular abnormalities in early diabetic retinopathy. Diabetes Metab Rev 13:15–35

    Article  CAS  PubMed  Google Scholar 

  3. Correia SC, Santos RX, Cardoso S, Carvalho C, Santos MS, Oliveira CR, Moreira PI (2010) Effects of estrogen in the brain: is it aneuroprotective agent in Alzheimer’s disease? Curr Aging Sci 3:113–126

    Article  PubMed  Google Scholar 

  4. Zhou X, Li F, Ge J, Sarkisian SR, Tomita H, Zaharia A, Chodosh J, Cao W (2007) Retinal ganglion cell protection by 17-β Estradiol in a mouse model of inherited glaucoma. Dev Neurobiol 67:603–616

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi K, Kobayashi H, Ueda M, Honda Y (1998) Estrogen receptor expression in bovine and rat retinas. Invest Ophthalmol Vis Sci 39:2105–2110

    CAS  PubMed  Google Scholar 

  6. Chatziralli IP, Sergentanis TN, Keryttopoulos P, Vatkalis N, Agorastos A, Papazisis L (2010) Risk factors associated with diabetic retinopathy in patients with diabetes mellitus type 2. BMC Res Notes 3:153

    Article  PubMed Central  PubMed  Google Scholar 

  7. Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, Gregg EW, Albright AL, Klein BEK, Klein R (2010) Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304:649–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Niizuma K, Endo H, Chanm PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109:133–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sancho P, Fernandez C, Yuste VJ, Amran D, Ramos AM, de Blas E, Susin SA, Aller P (2006) Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis 11:673–686

    Article  CAS  PubMed  Google Scholar 

  10. Anuradha CD, Kanno S, Hirano S (2001) Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radic Biol Med 31:367–373

    Article  CAS  PubMed  Google Scholar 

  11. Phaneuf S, Leeuwenburgh C (2002) Cytochromec release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol 282:423–430

    Google Scholar 

  12. Arnold S, Beyer C (2009) Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 110:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Kowluru RA, Tang J, Kern TS (2001) Abnormalities of retinal metabolism in diabetes and experimental galactosemia VII. Effect of long-term administration of anti-oxidants on the development of retinopathy. Diabetes 50:1938–1942

    Article  CAS  PubMed  Google Scholar 

  14. Vidya D, Shekhar R, Prabodh S, Chowdary NVS, Reddy MCDMJ (2011) Oxidative stress in diabetic retinopathy. JCDR 5:994–997

    Google Scholar 

  15. Fu Z, Kuang HY, Hao M, Gao XY, Liu Y, Shao N (2012) Protection of exenatide for retinal ganglion cells with different glucose concentrations. Peptides 37:25–31

    Article  PubMed  Google Scholar 

  16. Wassmann S, Bäumer AT, Strehlow K, Eickels MV, Grohé C, Ahlbory K, Rösen R, Böhm M, Nickenig G (2001) Endothelial dysfunction and oxidative stress during estrogen deficiency in spontaneously hypertensive rats. Circulation 103:435–441

    Article  CAS  PubMed  Google Scholar 

  17. Norikatsu K, Naoto A, Keyue L, Tatsuru A (2005) Acute effects of 17[beta]-estradiol on oxidative stress in ischemic rat striatum. J Neurosurg Anesthesiol 17:27–32

    Google Scholar 

  18. Mariana AP, Hao J, Alba IR, Cristina L, Robert AL, Selva RA (2006) Estrogen counteracts ozone-induced oxidative stress and nigral neuronal death. Neuroreport 17:629–633

    Article  Google Scholar 

  19. Wallace DR, Dodson S, Nath A, Booze RM (2006) Estrogen attenuates gp120-and tat1-72-induced oxidative stress and prevents loss of dopamine transporter function. Synapse 59:51–60

    Article  CAS  PubMed  Google Scholar 

  20. Chen JQ, Delannoy M, Cooke C, Yager JD (2004) Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. Am J Physiol Endocrinol Metab 286:1011–1022

    Article  Google Scholar 

  21. Chen JQ, Eshete M, Alworth WL, Yager JD (2004) Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondrial DNA estrogen response elements. J Cell Biochem 93:358–373

    Article  CAS  PubMed  Google Scholar 

  22. Yang SH, Liu R, Perez EJ, Wen Y, Stevens SM, Valencia T, Brun-Zinkernagel AM, Prokai L, Will Y, Dykens J, Koulen P, Simpkins JW (2004) Mitochondrial localization of estrogen receptor β. Proc Natl Acad Sci 101:4130–4135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Razmara A, Duckles SP, Krause DN, Procaccio V (2007) Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res 1176:71–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ogueta SB, Schwartz SD, Yamashita CK, Farber DB (1999) Estrogen receptor in the human eye: influence of gender and age on gene expression. Invest Ophthalmol Vis Sci 40:1906–1911

    CAS  PubMed  Google Scholar 

  25. Kim H, Bang OY, Jung MW, Ha SD, Hong HS, Huh K, Kim SU, Mook-Jung I (2001) Neuroprotective effects of estrogen against beta-amyloid toxicity are mediated by estrogen receptors in culturedneuronal cells. Neurosci Lett 302(1):58–62

    Article  CAS  PubMed  Google Scholar 

  26. Borrás C, Gambini J, López-Grueso R, Pallardó FV, Viña J (2010) Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta 1802:205–211

    Article  PubMed  Google Scholar 

  27. Ow PYL, Green DR, Hao Z, Mak TW (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9:532–542

    Article  CAS  PubMed  Google Scholar 

  28. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ding F, Shao ZW, Yang SH, Wu Q, Gao F, Xiong LM (2012) Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells. Apoptosis 17:579–590

    Article  CAS  PubMed  Google Scholar 

  30. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Broughton BRS, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:331–339

    Article  Google Scholar 

  34. Wang C, Jie C, Dai X (2014) Possible roles of astrocytes in estrogen neuroprotection during cerebral ischemia. Neuroscience 25(2):255–268

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Key Laboratory of Hepatosplenic Surgery (Harbin Medical University) Ministry of Education. This work was supported by The National Science Foundation for Post-doctoral Scientists of China (Grant No: 20090451019).

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Kuang.

Additional information

Ming Hao and Yue Li contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Li, Y., Lin, W. et al. Estrogen prevents high-glucose-induced damage of retinal ganglion cells via mitochondrial pathway. Graefes Arch Clin Exp Ophthalmol 253, 83–90 (2015). https://doi.org/10.1007/s00417-014-2771-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2771-7

Keywords

Navigation