Skip to main content
Log in

Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pulse-treatment of U-937 human promonocytic cells with cadmium chloride followed by recovery caused caspase-9/caspase-3-dependent, caspase-8-independent apoptosis. However, pre-incubation with the glutathione (GSH)-suppressing agent DL-buthionine-(S,R)-sulfoximine (cadmium/BSO), or co-treatment with H2O2 (cadmium/H2O2), switched the mode of death to caspase-independent necrosis. The switch from apoptosis to necrosis did not involve gross alterations in Apaf-1 and pro-caspase-9 expression, nor inhibition of cytochrome c release from mitochondria. However, cadmium/H2O2-induced necrosis involved ATP depletion and was prevented by 3-aminobenzamide, while cadmium/BSO-induced necrosis was ATP independent. Pre-incubation with BSO increased the intracellular cadmium accumulation, while co-treatment with H2O2 did not. Both treatments caused intracellular peroxide over-accumulation and disruption of mitochondrial transmembrane potential (ΔΨm). However, while post-treatment with N-acetyl-L-cysteine or butylated hydroxyanisole reduced the cadmium/BSO-mediated necrosis and ΔΨm disruption, it did not reduce the effects of cadmium/H2O2. Bcl-2 over-expression, which reduced peroxide accumulation without affecting the intracellular GSH content, attenuated necrosis generation by cadmium/H2O2 but not by cadmium/BSO. By contrast, AIF suppression, which reduced peroxide accumulation and increased the GSH content, attenuated the toxicity of both treatments. These results unravel the existence of two different oxidation-mediated necrotic pathways in cadmium-treated cells, one of them resulting from ATP-dependent apoptosis blockade, and the other involving the concurrence of multiple regulatory factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoeppler M. Cadmium. In: Merian A, ed. Metals and Their Compounds in the Environment. Occurrence, Analysis, and Biological Relevance. Weinheim, New York, Basel, Cambridge: VCH, 1991: 803–851.

    Google Scholar 

  2. Li M, Kondo T, Zhao QL, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways. J Biol Chem 2000; 275: 39702–39709.

    Article  PubMed  CAS  Google Scholar 

  3. Kondoh M, Araragi S, Sato K, Higashimoto M, Takiguchi M, Sato M. Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells. Toxicology 2002; 170: 111–117.

    Article  PubMed  CAS  Google Scholar 

  4. Shih CM, Wu JS, Ko WC, et al. Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells. J Cell Biochem 2003; 89: 335–347.

    Article  PubMed  CAS  Google Scholar 

  5. López E, Figueroa S, Oset-Gasque MJ, González MP. Apoptosis and necrosis: Two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 2003; 138: 901–911.

    Article  PubMed  Google Scholar 

  6. Somji S, Garrett SH, Sens MA, Gurel V, Sens DA. Expression of metallothionein isoform 3 (MT-3) determines the choice between apoptotic or necrotic cell death in Cd2+-exposed human proximal tubule cells. Toxicol Sci 2004; 8: 358–366.

    Article  Google Scholar 

  7. Bailey HH. L-S,R-buthionine sulfoximine: Historical development and clinical issues. Chem Biol Interact 1998; 111–112: 239–254.

    Article  PubMed  Google Scholar 

  8. Galán A, Troyano A, Vilaboa NE, Fernández C, de Blas E, Aller P. Modulation of the stress response during apoptosis and necrosis induction in cadmium-treated U-937 human promonocytic cells. Biochim Biophys Acta 2001; 1538: 38–46.

    Article  PubMed  Google Scholar 

  9. McGowan AJ, Bowie AG, O’Neill LA, Cotter TG. The production of a reactive oxygen intermediate during the induction of apoptosis by cytotoxic insult. Exp Cell Res 1998; 238: 248–256.

    Article  PubMed  CAS  Google Scholar 

  10. Lee YJ, Shacter E. Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem 1999; 274: 19792–19798.

    Article  PubMed  CAS  Google Scholar 

  11. Ramos AM, Fernández C, Amrán D, Sancho P, de Blas E, Aller P. Pharmacological inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood 2005; 105: 4013–4020.

    Article  PubMed  CAS  Google Scholar 

  12. Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochem Pharmacol 2002; 64: 1019–1026.

    Article  PubMed  CAS  Google Scholar 

  13. Sundström C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 1976; 17: 565–577.

    PubMed  Google Scholar 

  14. Renvoize C, Roger R, Moulian N, Bertoglio J, Bréard J. Bcl-2 expression in target cells leads to functional inhibition of caspase-3 protease family in human NK and lymphokine-activated killer cell granule-mediated apoptosis. J Immunol 1997; 159: 126–134.

    PubMed  CAS  Google Scholar 

  15. Troyano A, Fernández C, Sancho P, de Blas E, Aller P. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J Biol Chem 2001; 276: 47107–47115.

    Article  PubMed  CAS  Google Scholar 

  16. Bellosillo B, Villamor N, López-Guillermo A, et al. Spontaneous and drug-induced apoptosis mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukaemia. Blood 2002; 100: 1810–1816.

    Article  PubMed  CAS  Google Scholar 

  17. Sancho P, Troyano A, Fernández C, de Blas E, Aller P. Differential effects of catalase on apoptosis induction in human promonocytic cells. Relationships with heat-shock protein expression. Mol Pharmacol 2003; 63: 581–589.

    Article  PubMed  CAS  Google Scholar 

  18. Amrán D, Sancho P, Fernández C, et al. Pharmacological inhibitors of extracellular signal-regulated protein kinases attenuate the apoptotic action of cisplatin in human myeloid leukemia cells via glutathione-independent reduction in intracellular drug accumulation. Biochim Biophys Acta 2005; 1743: 269–279.

    Article  PubMed  Google Scholar 

  19. Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Therapeut 2001; 92: 57–70.

    Article  CAS  Google Scholar 

  20. Hyslop PA, Hinshaw DB, Halsey WA Jr, et al. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 1988; 263: 1665–1675.

    PubMed  CAS  Google Scholar 

  21. Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997; 57: 1835–1840.

    PubMed  CAS  Google Scholar 

  22. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185: 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  23. Filipovic DM, Meng X, Reeves WB. Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells. Am J Physiol 1999; 277: F428–F436.

    PubMed  CAS  Google Scholar 

  24. Cole KK, Pérez-Polo JR. Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H2O2 injury. J Neurochem 2002; 82: 19–29.

    Article  PubMed  CAS  Google Scholar 

  25. Klaassen CD, Bracken WM, Dudley RE, Goering PL, Hazelton GA, Hjelle JJ. Role of sulfhydryls in the hepatotoxicity of organic and metallic compounds. Fundam Appl Toxicol 1985; 5: 806–815.

    Article  PubMed  CAS  Google Scholar 

  26. Li M, Xia T, Jiang CS, Li L, Fu J, Zhou Z. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology 2003; 194: 19–33.

    Article  PubMed  CAS  Google Scholar 

  27. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    Article  PubMed  CAS  Google Scholar 

  28. Kane DJ, Sarafian TA, Anton R, et al. Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 1993; 262: 1274–1277.

    PubMed  CAS  Google Scholar 

  29. Shimizu S, Eguchi Y, Kamiike W, et al. Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: Possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 1996; 12: 2045–2050.

    PubMed  CAS  Google Scholar 

  30. Guénal I, Sidoti-de Fraisse C, Gaumer S, Mignotte B. Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 1997; 15: 347–360.

    Article  PubMed  Google Scholar 

  31. Denecker G, Vercammen D, Steemans M, et al. Death receptor-induced apoptotic and necrotic cell death: Differential role of caspases and mitochondria. Cell Death Differ 2001; 8: 829–840.

    Article  PubMed  CAS  Google Scholar 

  32. Susin S, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    Article  PubMed  CAS  Google Scholar 

  33. Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 2001; 276: 16391–16398.

    Article  PubMed  CAS  Google Scholar 

  34. Vahsen N, Candé C, Brière JJ, et al. AIF deficiency compromises oxidative phosphorylation. EMBO J 2004; 23: 4679–4689.

    Article  PubMed  CAS  Google Scholar 

  35. Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002; 419: 367–374.

    Article  PubMed  CAS  Google Scholar 

  36. Candé C, Vahsen N, Métivier D, et al. Regulation of cytoplasmic stress granules by apoptosis-inducing factor. J Cell Sci 2004; 117: 4461–4468.

    Article  PubMed  Google Scholar 

  37. Saikumar P, Dong Z, Patel Y, et al. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 1998; 17: 3401–3415.

    Article  PubMed  CAS  Google Scholar 

  38. Single B, Leist M, Nicotera P. Differential effects of bcl-2 on cell death triggered under ATP-depleting conditions. Exp Cell Res 2001; 262: 8–16.

    Article  PubMed  CAS  Google Scholar 

  39. Cossarizza A, Franceschi C, Monti D, et al. Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells: The role of mitochondria. Exp Cell Res 1995; 220: 232–240.

    Article  PubMed  CAS  Google Scholar 

  40. Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: Apoptosis, necrosis and reactive oxygen damage. Oncogene 1999; 18: 7719–7730.

    Article  PubMed  CAS  Google Scholar 

  41. Barros LF, Hermosilla T, Castro J. Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 2001; 130: 401–409.

    Article  PubMed  CAS  Google Scholar 

  42. Maeda H, Hori S, Ohizumi H, et al. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ 2004; 89: 737–746.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Aller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancho, P., Fernández, C., Yuste, V.J. et al. Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis 11, 673–686 (2006). https://doi.org/10.1007/s10495-006-5879-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-5879-3

Keywords

Navigation