Skip to main content

Advertisement

Log in

Corneal biomechanics predict the outcome of selective laser trabeculoplasty in medically uncontrolled glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the predictive value of clinical parameters, including biomechanical properties on the outcome of selective laser trabeculoplasty (SLT) in medically uncontrolled open angle glaucoma (OAG).

Methods

Sixty-eight eyes from 68 patients with OAG and IOP insufficiently regulated by topical medications were enrolled. Patients’ follow-up occurred 6 and 12 months after the procedure. The recorded parameters intraocular pressure (IOP), angle characteristics, central corneal thickness (CCT) and biomechanical properties of the eyes, including corneal hysteresis CH and corneal resistance factor CRF measured with the Ocular Responses Analyzer (ORA, Reichert Ophthalmic Instruments) were tested on their predictive value of SLT-induced IOP lowering effect using correlation analyses and regression models.

Results

Mean IOP reduction 12 months after SLT was 4.2 ± 5.7 mmHg (23.2 %, from baseline 18.1 ± 5.2 mmHg). The preoperative IOP correlated significantly with IOP reduction (maximum Spearman’s correlation r = 0.75, p < 0.001). In linear regression analysis, the corneal biomechanical properties (CH and CRF) together with the baseline IOP revealed good modelling for the IOP lowering effect of SLT (R2 = 0.64, respectively).

Conclusions

In addition to the baseline IOP biomechanical properties (CH and CRF) are significant predictors of SLT induced IOP lowering effect in medically uncontrolled OAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  PubMed  CAS  Google Scholar 

  2. Krasnov M (1972) Laser puncture of the anterior chamber angle in glaucoma (a preliminary report) [in Russian]. Vestn Oftalmol 3:27–31.

  3. Latina MA, Park C (1995) Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions. Exp Eye Res 60:359–371

    Article  PubMed  CAS  Google Scholar 

  4. Bovell AM, Damji KF, Hodge WG, Rock WJ, Buhrmann RR, Pan YI (2011) Long term effects on the lowering of intraocular pressure: selective laser or argon laser trabeculoplasty? Can J Ophthalmol 46:408–413

    PubMed  Google Scholar 

  5. Liu Y, Birt CM (2012) Argon versus selective laser trabeculoplasty in younger patients: 2-year results. J Glaucoma 21:112–115

    PubMed  Google Scholar 

  6. Kramer TR, Noecker RJ (2001) Comparison of the morphologic changes after selective laser trabeculoplasty and argon laser trabeculoplasty in human eye bank eyes. Ophthalmology 10:773–779

    Article  Google Scholar 

  7. Samples JR, Singh K, Lin SC, Francis BA, Hodapp E, Jampel HD, Smith SD (2011) Laser trabeculoplasty for open-angle Glaucoma A report by the american academy of ophthalmology. Ophthalmology 118:2296–2302

    Article  PubMed  Google Scholar 

  8. Katz LJ, Steinmann WC, Kabir A, Molineaux J, Wizov SS, Marcellino G (2012) Selective laser trabeculoplasty versus medical therapy as initial treatment of glaucoma: a prospective, randomized trial. J Glaucoma 21:460–468

    Article  PubMed  Google Scholar 

  9. Ayala M, Chen E (2011) Predictive factors of success in selective laser trabeculoplasty (SLT) treatment. Clin Ophthalmol 5:573–576

    Article  PubMed  Google Scholar 

  10. Tzimis V, Tze L, Ganesh J, Muhsen S, Kiss A, Kranemann C, Birt CM (2011) Laser trabeculoplasty: an investigation into factors that might influence outcomes. Can J Ophthalmol 46:305–309

    PubMed  Google Scholar 

  11. Bruen R, Lesk MR, Harasymowycz P (2012) Baseline factors predictive of SLT response: a prospective study. J Ophthalmol 2012:642869

    PubMed  Google Scholar 

  12. De Moraes CV, Hill V, Tello C, Liebmann JM, Ritch R (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma 21:209–213

    Article  PubMed  Google Scholar 

  13. Abitbol O, Bouden J, Doan S, Hoang-Xuan T, Gatinel D (2010) Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol 88:116–119

    Article  PubMed  Google Scholar 

  14. Spaeth GL (1971) The normal development of the human anterior chamber angle: a new system of descriptive grading. Trans Ophthalmol Soc U K 91:709–739

    PubMed  CAS  Google Scholar 

  15. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162

    Article  PubMed  Google Scholar 

  16. Sullivan-Mee M, Billingsley SC, Patel AD, Halverson KD, Alldredge BR, Qualls C (2008) Ocular Response Analyzer in subjects with and without glaucoma. Optom Vis Sci 85:463–470

    Article  PubMed  Google Scholar 

  17. Kirwan C, O’Malley D, O’Keefe M (2008) Corneal hysteresis and corneal resistance factor in keratoectasia: findings using the Reichert ocular response analyzer. Ophthalmologica 222:334–337

    Article  PubMed  Google Scholar 

  18. Carbonaro F, Andrew T, Mackey DA, Spector TD, Hammond CJ (2008) The heritability of corneal hysteresis and ocular pulse amplitude: a twin study. Ophthalmology 115:1545–1549

    Article  PubMed  Google Scholar 

  19. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I (2007) Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 48:3026–3031

    Article  PubMed  Google Scholar 

  20. Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alio JL (2007) Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg 33:1371–1375

    Article  PubMed  Google Scholar 

  21. Kirwan C, O’Keefe M, Lanigan B (2006) Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol 142:990–992

    Article  PubMed  Google Scholar 

  22. Sporl E, Terai N, Haustein M, Bohm AG, Raiskup-Wolf F, Pillunat LE (2009) Biomechanical condition of the cornea as a new indicator for pathological and structural changes. Ophthalmologe 106:512–520

    Article  PubMed  CAS  Google Scholar 

  23. Hirneiss C, Neubauer AS, Yu A, Kampik A, Kernt M (2011) Corneal biomechanics measured with the ocular response analyser in patients with unilateral open-angle glaucoma. Acta Ophthalmol 2011(89):e189–e192

    Article  Google Scholar 

  24. Prasad N, Murthy S, Dagianis JJ, Latina MA (2009) A comparison of the intervisit intraocular pressure fluctuation after 180 and 360 degrees of selective laser trabeculoplasty (SLT) as a primary therapy in primary open angle glaucoma and ocular hypertension. J Glaucoma 18:157–160

    Article  PubMed  Google Scholar 

  25. Nagar M, Luhishi E, Shah N (2009) Intraocular pressure control and fluctuation: the effect of treatment with selective laser trabeculoplasty. Br J Ophthalmol 93:497–501

    Article  PubMed  CAS  Google Scholar 

  26. Hodge WG, Damji KF, Rock W, Buhrmann R, Bovell AM, Pan Y (2005) Baseline IOP predicts selective laser trabeculoplasty success at 1 year post-treatment: results from a randomised clinical trial. Br J Ophthalmol 89:1157–1160

    Article  PubMed  CAS  Google Scholar 

  27. Koucheki B, Hashemi H (2012) Selective laser trabeculoplasty in the treatment of open-angle glaucoma. J Glaucoma 21:65–70

    Article  PubMed  Google Scholar 

  28. Shazly TA, Latina MA, Dagianis JJ, Chitturi S (2012) Effect of central corneal thickness on the long-term outcome of selective laser trabeculoplasty as primary treatment for ocular hypertension. Cornea 31:883–886

    Article  PubMed  Google Scholar 

  29. Martow E, Hutnik CM, Mao A (2011) SLT and adjunctive medical therapy: a prediction rule analysis. J Glaucoma 20:266–270

    Article  PubMed  Google Scholar 

  30. Hirn C, Zweifel SA, Toteberg-Harms M, Funk J (2012) Effectiveness of selective laser trabeculoplasty in patients with insufficient control of intraocular pressure despite maximum tolerated medical therapy. Ophthalmologe 109:683–690

    Article  PubMed  CAS  Google Scholar 

  31. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KC, Sachdev N (2008) Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 49:3262–3268

    Article  PubMed  Google Scholar 

  32. Last JA, Pan T, Ding Y, Reilly CM, Keller K, Acott TS, Fautsch MP, Murphy CJ, Russell P (2011) Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci 52:2147–2152

    Article  PubMed  Google Scholar 

  33. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31:146–155

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No authors have any conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hirneiß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirneiß, C., Sekura, K., Brandlhuber, U. et al. Corneal biomechanics predict the outcome of selective laser trabeculoplasty in medically uncontrolled glaucoma. Graefes Arch Clin Exp Ophthalmol 251, 2383–2388 (2013). https://doi.org/10.1007/s00417-013-2416-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2416-2

Keywords

Navigation