Skip to main content

Advertisement

Log in

Different phenotypes of the appearance of the outer plexiform layer on optical coherence tomography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To present a selected case series of different phenotypes of the normal outer plexiform layer (OPL) visualized by optical coherence tomography (OCT).

Methods

Five cases were selected to represent the spectrum of appearances of the OPL in this case series. Categorical descriptions of each manifestation were then developed. Additional SD-OCT scans were obtained from a normal volunteer to further support the hypothesis.

Results

The inner one-third of the OPL typically appears hyperreflective on OCT, while the outer two-thirds (Henle fiber layer) may have a more varied appearance. Six different phenotypes of Henle fiber layer reflectivity were noted in this series, and classified as: bright, columnar, dentate, delimited, indistinct, and dark. The brightness of the Henle fiber layer appears to depend on the geometric angle between the OCT light beam and the axonal fibers in this portion of the OPL. This angle appears to be a function of the natural orientation of the Henle fiber layer tissue (θN), the existence of subretinal pathology that alters the angle of the neurosensory retina (θP), and the tilt angle of the tissue on the B-scan (θT) due to decentered OCT acquisition.

Conclusions

Since accurate interpretation of the OPL/ONL boundary is of vital importance to study the thickness of ONL, location of cystoid lesions, hyperreflective crescents over drusen, et al., our case series may aid better understanding of the OPL appearance in SD-OCT. In the absence of clear delineation, it may be most correct to refer to indistinct OPL and ONL together as the photoreceptor nuclear axonal complex (PNAC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OCT:

optical coherence tomography

SD-OCT:

spectral-domain optical coherence tomography

ONL:

outer nuclear layer

OPL:

outer plexiform layer

RPE:

retinal pigment epithelium

AMD:

age-related macular degeneration

CME:

cystoid macular edema

CSR:

central serous choroioretinopathy

ILM:

internal limiting membrane

IPL:

inner plexiform layer

INL:

inner nuclear layer

PED:

pigment epithelial detachment

References

  1. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–332

    Article  PubMed  CAS  Google Scholar 

  2. Toth CA, Narayan DG, Boppart SA, Hee MR, Fujimoto JG, Birngruber R, Cain CP, DiCarlo CD, Roach WP (1997) A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol 115:1425–1428

    Article  PubMed  CAS  Google Scholar 

  3. Costa RA, Calucci D, Skaf M, Cardillo JA, Castro JC, Melo LA, Martins MC, Kaiser PK (2004) Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest Ophthalmol Vis Sci 45:2399–2406

    Article  PubMed  Google Scholar 

  4. Pons ME, Garcia-Valenzuela E (2005) Redefining the limit of the outer retina in optical coherence tomography scans. Ophthalmology 112:1079–1085

    Article  PubMed  Google Scholar 

  5. Keane PA, Bhatti RA, Brubaker JW, Liakopoulos S, Sadda SR, Walsh AC (2009) Comparison of clinically relevant findings from high-speed fourier-domain and conventional time-domain optical coherence tomography. Am J Ophthalmol 148:242.e1–248.e1

    Article  Google Scholar 

  6. Sander B, Larsen M, Thrane L, Hougaard JL, Jørgensen TM (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 89:207–212

    Article  PubMed  CAS  Google Scholar 

  7. Sakamoto A, Hangai M, Yoshimura N (2008) Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 115:1071e.7–1078.e7

    Article  Google Scholar 

  8. Gorczynska I, Srinivasan VJ, Vuong LN, Chen RWS, Liu JJ, Reichel E, Wojtkowski M, Schuman JS, Duker JS, Fujimoto JG (2009) Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration. Br J Ophthalmol 93:603–609

    Article  PubMed  CAS  Google Scholar 

  9. Srinivasan VJ, Monson BK, Wojtkowski M, Bilonick RA, Gorczynska I, Chen R, Duker JS, Schuman JS, Fujimoto JG (2008) Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 49:1571–1579

    Article  PubMed  Google Scholar 

  10. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  PubMed  Google Scholar 

  11. Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS (2005) Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 46:2012–2017

    Article  PubMed  Google Scholar 

  12. Tan O, Li G, Lu AT-H, Varma R, Huang D (2008) Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956

    Article  PubMed  Google Scholar 

  13. Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R (2008) Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146:679–687

    Article  PubMed  Google Scholar 

  14. Watanabe A, Arimoto S, Nishi O (2009) Correlation between metamorphopsia and epiretinal membrane optical coherence tomography findings. Ophthalmology 116:1788–1793

    Article  PubMed  Google Scholar 

  15. Spencer HW (ed) (1985) Ophthalmic pathology: an atlas and textbook. WB Saunders, Philadelphia, pp 589–963.

  16. Otani T, Yamaguchi Y, Kishi S (2011) Improved visualization of Henle fiber layer by changing the measurement beam angle on optical coherence tomography. Retina 31:497–501

    Article  PubMed  Google Scholar 

  17. Lujan BJ, Roorda A, Knighton RW, Carroll J (2011) Revealing Henle’s fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1486–1492

    Article  PubMed  Google Scholar 

  18. Curcio CA, Messinger JD, Sloan KR, Mitra A, McGwin G, Spaide RF (2011) Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections. Invest Ophthalmol Vis Sci 52:3943–3954

    Article  PubMed  Google Scholar 

  19. Kashani AH, Keane PA, Dustin L, Walsh AC, Sadda SR (2009) Quantitative subanalysis of cystoid spaces and outer nuclear layer using optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci 50:3366–3373

    Article  PubMed  Google Scholar 

  20. Gregori NZ, Berrocal AM, Gregori G, Murray TG, Knighton RW, Flynn HW, Dubovy S, Puliafito CA, Rosenfeld PJ (2009) Macular spectral-domain optical coherence tomography in patients with X linked retinoschisis. Br J Ophthalmol 93:373–378

    Article  PubMed  CAS  Google Scholar 

  21. Schuman SG, Koreishi AF, Farsiu S, Jung S, Izatt JA, Toth CA (2009) Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with spectral-domain optical coherence tomography. Ophthalmology 116:488–496

    Google Scholar 

  22. Rotsos TG, Moschos MM (2008) Cystoid macular edema. Clin Ophthalmol 2:919–930

    Article  PubMed  Google Scholar 

  23. Gass JDM (1987) Stereoscopic atlas of macular disease: diagnosis and treatment. Mosby, St. Louis, pp 422–428

    Google Scholar 

  24. Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97:239–249

    Article  PubMed  CAS  Google Scholar 

  25. Saidha S, Sotirchos ES, Ibrahim MA, Crainiceanu CM, Gelfand JM, Sepah YJ, Ratchford JN, Oh J, Seigo MA, Newsome SD, Balcer LJ, Frohman EM, Green AJ, Nguyen QD, Calabresi PA (2012) Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 11:963–972

    Article  PubMed  Google Scholar 

  26. Antcliff RJ, Marshall J (1999) The pathogenesis of edema in diabetic maculopathy. Semin Ophthalmol 14:223–232

    Article  PubMed  CAS  Google Scholar 

  27. Wolter JR (1981) The histopathology of cystoid macular edema. Albrecht von Graefes Arch Clin Exp Ophthalmol 216:85–101

    CAS  Google Scholar 

  28. Bringmann A, Reichenbach A, Wiedemann P (2004) Pathomechanisms of cystoid macular edema. Ophthalmic Res 36:241–249

    Article  PubMed  Google Scholar 

  29. Tso MO (1982) Pathology of cystoid macular edema. Ophthalmology 89:902–915

    PubMed  CAS  Google Scholar 

  30. Ouyang Y, Heussen FM, Keane PA, Pappuru RKR, Sadda SR, Walsh AC (2013) Evaluation of the axial location of cystoid spaces in retinal vein occlusion using optical coherence tomography. Retina (Philadelphia, Pa.). doi:10.1097/IAE.0b013e318273f0e9

Download references

Disclosure

Drs. Walsh and Sadda are co-inventors of Doheny intellectual property related to optical coherence tomography that has been licensed by Topcon Medical Systems, and are members of the scientific advisory board for Heidelberg Engineering. Dr Sadda also receives research support from Carl Zeiss Meditec, Optos, and Optovue, Inc.

Supported in part by the Deutsche Forschungsgemeinschaft (DFG grant He 6094/1-1), and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas R. Sadda.

Additional information

Yanling Ouyang and Alexander C. Walsh are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, Y., Walsh, A.C., Keane, P.A. et al. Different phenotypes of the appearance of the outer plexiform layer on optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251, 2311–2317 (2013). https://doi.org/10.1007/s00417-013-2308-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2308-5

Keywords

Navigation