Skip to main content

Advertisement

Log in

Evaluating retinal toxicity of a new heavy intraocular dye, using a model of perfused and isolated retinal cultures of bovine and human origin

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Dyes such as brilliant blue (BBG) are used during vitreoretinal surgery to visualize anatomical structures. By adding deuterium oxide (D2O), surgeons have tried to create a dye mixture heavier than water to facilitate staining of the inner limiting membrane (ILM) without prior fluid–air exchange. This study investigated the effect of 0.4 ml BBG (Fluoron, Ulm, Germany) mixed with 0.13 ml/ml D2O and D2O on retinal function of a pseudo in vivo model using bovine and human whole mount cultures.

Methods

Bovine and human retinas were superfused, and the electroretinogram (ERG) was recorded. BBG with 0.13 ml/ml D2O and D2O were applied epiretinally, different staining periods (10, 30, 60 and 120 s) were tested, and ERG recovery was monitored. 1 mM aspartate was added to the nutrient solution to examine the photoreceptor reaction.

Results

Reductions of the a- and b-wave amplitudes were found directly after exposure with BBG with 0.13 ml/ml D2O and with D2O in all test series. These effects on the electroretinogram were rapidly and completely reversible within the recovery time for all exposure times. ERG amplitudes measured after dye application at the end of the washout did not differ significantly from those recorded before staining.

Conclusions

The clinically used mixture of BBG/D2O seems to be safe for clinical use. Staining periods of more than 120 seconds were not tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kelly NE, Wendel RT (1991) Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol 109:654–659

    Article  PubMed  CAS  Google Scholar 

  2. Park DW, Sipperley JO, Sneed SR, Dugel PU, Jacobsen J (1999) Macular hole surgery with internal-limiting membrane peeling and intravitreous air. Ophthalmology 106:1392–1397

    Article  PubMed  CAS  Google Scholar 

  3. Cherrick SR, Stein SW, Leevy CM, Davidson CS (1960) Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600

    Article  PubMed  CAS  Google Scholar 

  4. Da Mata AP, Burk SE, Riemann CD, Rosa RH Jr, Snyder ME, Petersen MR, Foster RE (2001) Indocyanine green-assisted peeling of the retinal internal limiting membrane during vitrectomy surgery for macular hole repair. Ophthalmology 108:1187–1192

    Article  PubMed  Google Scholar 

  5. Cheng SN, Yang TC, Ho JD, Hwang JF, Cheng CK (2005) Ocular toxicity of intravitreal indocyanine green. J Ocul Pharmacol Ther 21:85–93

    Article  PubMed  CAS  Google Scholar 

  6. Haritoglou C, Gandorfer A, Gass CA, Schaumberger M, Ulbig MW, Kampik A (2002) Indocyanine green-assisted peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation. Am J Ophthalmol 134:836–841

    Article  PubMed  Google Scholar 

  7. Kanda S, Uemura A, Yamashita T, Kita H, Yamakiri K, Sakamoto T (2004) Visual field defects after intravitreous administration of indocyanine green in macular hole surgery. Arch Ophthalmol 122:1447–1451

    Article  PubMed  CAS  Google Scholar 

  8. Enaida H, Hisatomi T, Hata Y, Ueno A, Goto Y, Yamada T, Kubota T, Ishibashi T (2006) Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling. Retina 26:631–636

    Article  PubMed  Google Scholar 

  9. Remy M, Thaler S, Schumann RG, May CA, Fiedorowicz M, Schuettauf F, Grüterich M, Priglinger SG, Nentwich MM, Kampik A, Haritoglou C (2008) An in vivo evaluation of Brilliant Blue G in animals and humans. Br J Ophthalmol 92:1142–1147

    Article  PubMed  CAS  Google Scholar 

  10. Kawahara S, Hata Y, Miura M, Kita T, Sengoku A, Nakao S, Mochizuki Y, Enaida H, Ueno A, Hafezi-Moghadam A, Ishibashi T (2007) Intracellular events in retinal glial cells exposed to ICG and BBG. Invest Ophthalmol Vis Sci 48:4426–4432

    Article  PubMed  Google Scholar 

  11. Brown JP, Dorsky A, Enderlin FE, Hale RL, Wright VA, Parkinson TM (1980) Synthesis of 14C-labelled FD&C Blue No. 1 (Brilliant Blue FCF) and its intestinal absorption and metabolic fate in rats. Food Cosmet Toxicol 18:1–5

    Article  CAS  Google Scholar 

  12. Januschowski K, Mueller S, Spitzer MS, Lueke M, Bartz-Schmidt KU, Szurman P (2011) The effects of the intraocular dye brilliant blue G (BBG) mixed with varying concentrations of glucose on retinal function in an isolated perfused vertebrate retina. Graefes Arch Clin Exp Ophthalmol 249:483–489

    Article  PubMed  CAS  Google Scholar 

  13. Bradley CA, Urey H (1932) The relative abundance of hydrogen isotopes in natural hydrogen. Phys Rev 40:889–890

    Article  CAS  Google Scholar 

  14. Kushner DJ, Baker A, Dunstall TG (1999) Pharmacological uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol 77:79–88

    Article  PubMed  CAS  Google Scholar 

  15. Medina DC, Li X, Springer CS Jr (2005) Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours. Phys Med Biol 50:2127–2139

    Article  PubMed  CAS  Google Scholar 

  16. Thomson JF (1960) Physiological effects of D20 in mammals. Ann N Y Acad Sci 84:736–744

    Article  PubMed  CAS  Google Scholar 

  17. Czajka DM, Finkel AJ, Fischer CS, Katz JJ (1961) Physiological effects of deuterium on dogs. Am J Physiol 201:357–362

    PubMed  Google Scholar 

  18. Katz JJ, Crespi L, Czajka DM, Finkel AJ (1962) Course of deuteration and some physiological effects of deuterium in mice. Am J Physiol 203:907–913

    PubMed  CAS  Google Scholar 

  19. Lueke M, Weiergraeber M, Brand C, Siapich SA, Banat M, Hescheler J, Lueke C, Schneider T (2005) The isolated perfused bovine retina–a sensitive tool for pharmacological research on retinal function. Brain Res Brain Res Protoc 16:27–36

    Article  CAS  Google Scholar 

  20. Perlman I (2009) Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques. Doc Ophthalmol 118:3–28

    Article  PubMed  Google Scholar 

  21. Mukhopadhyay A, Gupta A, Mukherjee S, Chaudhuri K, Ray K (2002) Did myocilin evolve from two different primordial proteins? Mol Vis 8:271–279

    PubMed  CAS  Google Scholar 

  22. Richter SH, Garner JP, Würbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6:257–261

    Article  PubMed  CAS  Google Scholar 

  23. Lüke M, Januschowski K, Beutel J, Lueke C, Grisanti S, Peters S, Jaissle GB, Bartz-Schmidt KU, Szurman P (2008) Electrophysiological effects of Brilliant Blue G in the model of the isolated perfused vertebrate retina. Graefes Arch Clin Exp Ophthalmol 246:817–822

    Article  PubMed  Google Scholar 

  24. Marmor MF (1979) Retinal detachment from hyperosmotic intravitreal injection. Invest Ophthalmol Vis Sci 18:1237–1244

    PubMed  CAS  Google Scholar 

  25. Morales MC, Freire V, Asumendi A, Araiz J, Herrera I, Castiella G, Corcóstegui I, Corcóstegui G (2010) comparative effects of six intraocular vital dyes on retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 51:6018–6029

    Article  PubMed  Google Scholar 

  26. Januschowski K, Mueller S, Spitzer MS, Hoffmann J, Schramm C, Schultheiß M, Bartz-Schmidt KU, Szurman P (2011) Investigating the biocompatibility of two new heavy intraocular dyes for vitreoretinal surgery with an isolated perfused vertebrate retina organ culture model and a retinal ganglion cell line. Graefes Arch Clin Exp Ophthalmol Dec 11 [Epub ahead of print]. doi:10.1007/s00417-011-1895-2

Download references

Acknowledgements

We would like to thank Dr. Matthias Lueke for his help and his expertise. Regina Hofer for her exceptional patience with our graphics, and Evi Kanz for her ability to find the most-difficult-to-find papers under the most adverse conditions. We would like to also thank Gershom Spengler and Albert Lee for their proofreading.

Disclosure

K. Januschowski, none; S. Mueller, none; M. S. Spitzer, none; C. Schramm, none, K.U. Bartz-Schmidt , none; P. Szurman, none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Januschowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Januschowski, K., Mueller, S., Spitzer, M.S. et al. Evaluating retinal toxicity of a new heavy intraocular dye, using a model of perfused and isolated retinal cultures of bovine and human origin. Graefes Arch Clin Exp Ophthalmol 250, 1013–1022 (2012). https://doi.org/10.1007/s00417-012-1989-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-1989-5

Keywords

Navigation